tool pin
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 140)

H-INDEX

25
(FIVE YEARS 6)

2022 ◽  
Vol 14 (2) ◽  
pp. 875
Author(s):  
Tzen-Ying Ling

Resilience practice is a place-based activity. This study incorporates the notion of “Transitional Progress” as an available scoping tool pin-pointing the human-habitat domain; the critical human resilience build-up can be identified by the site-specific and locally adapted practice as the residents’ perception and interaction within the local geographical character are examined. The assessment framework is proposed as a measurable process, followed by an adaptive cycle valuation performed for each of the scales at the different transitional stages. This resilience varies from the degree and time exposed to flood and the resident’s respective responses regarding people, community, and place; accordingly, the semi-structured interview documented respondents’ self-evaluation from the Peitou Plateau in Taipei. The study ascertained that in the face of climate risks: (1) adaptive measures aided and enhanced the information gathered for risk impact is based on the residents’ perception of the habitat and human domain (2) adaptive capacity assessment is an effective mean in understanding residents’ mitigation will and confidence, and (3) community ability to reflect on past actual time scenario. Most importantly, the assessment framework contributes to understanding local adaptation practice and contributes toward the sustainability of the urbanity.


Author(s):  
Pragya Saxena ◽  
Arunkumar Bongale ◽  
Satish Kumar ◽  
Priya Sachin Jadhav

Abstract The surface composites of aluminum alloys have a higher scope of applications encountering surface interactions in the aerospace, automobile, and other industries compared to the base aluminum alloys. The friction stir process (FSP) is recently the preferred method to prepare aluminum-based surface composites due to its capability to produce improved physical properties and refined microstructure at the surface. The study examines the Al6061 alloy-based surface composite fabricated by FSP for their wear behavior and microstructure. In this study, the Al6061 alloy-based hybrid surface composites are prepared with varying weight% of copper and graphite microparticles mixture as reinforcement by FSP with two tools having unique pin profiles, i.e., threaded cylindrical and plain cylindrical. These prepared composites are investigated for the dry sliding wear test on a pin-on-disc test set-up. The experiments are designed using the L9 orthogonal array and analyzed by the Taguchi approach to obtain the influence of disc speed, load, and reinforcement weight% on wear rate. The significant parameters influencing the wear rate of the samples tested are obtained using ANOVA. Later the effects of the friction stir process and the wear tests on the microstructure of the workpieces are investigated using FE-SEM/EDS tests. It is concluded that the decrease in wear rate with the rise in reinforcement weight% (Cu + graphite) from 2% to 6%. The load has the maximum effect on the wear rate for the samples prepared by threaded cylindrical FSP tool pin profile, while reinforcement weight% affects significantly the wear rate of the samples prepared by FSP with plain cylindrical pin profile tool.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Nurul Muhayat ◽  
Mulyadi Sinung Harjono ◽  
Yohanes Pringeten Dilianto Sembiring Depari ◽  
Aditya Rio Prabowo ◽  
Triyono Triyono ◽  
...  

In order to meet the escalating demand in the shipbuilding business, suitable materials with enhanced qualities are required to maximize ship cargo while reducing fuel consumption. Aluminum (Al) and its alloys are competing contenders for use in a variety of complicated ship structures. The major challenge to enhancing joint quality and performance is the quest for a viable and efficient FSW parameter. The main focus of this study was to critically explore the effect of the tool pin profile and the preheat temperature used during the friction stir welding of AA 5052-H32 on its mechanical properties and weld microstructure characteristics. There are three pin profile variations, including samples that were cylindrical, samples with two flat sides, and samples with three flat sides, all of which were investigated in different preheat temperatures (150–300 °C). The results that were obtained during macrographic observation showed that tunnel defects were visible in the cylindrical and two-flat-sided pin profile designs. During observations of the microstructure, it was observed that the grain size became finer and smaller in the weld nugget compared to in the heat affected zone (HAZ) and thermo-mechanically affected zone (TMAZ) regions due to dynamic recrystallization. However, at the 300 °C preheat variation, the grain size appeared to be larger due to the slower cooling rate, causing a decrease in the mechanical properties of the samples. The results of the physical tests determined that the preheat temperature caused an increase in the mechanical properties until 250 °C, at which point the three-flat-sided pin profile tool demonstrated superior mechanical properties compared to the tools with a cylindrical design; a 12.2% tensile strength increase, a 15.3% and 9.4% face and root bending increase, and an 11.2% hardness increase were observed.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
M. Madhusudan ◽  
S. P. Shanmuganatan ◽  
Kurse Shridhar ◽  
Jacob John ◽  
R. Krishnamurthy ◽  
...  

Friction stir welding (FSW) is an emerging solid-state process and alternative to fusion welding, wherein frictional heat is generated between a nonconsumable rotating steel tool and the work substrate. The present study focuses on the influence of the operating attributes like tool pin contact geometry, welding speed, and tool rotational speed on dissimilar aluminum matrix nanocomposites. AA6061-T6 and AA7075-T651 aluminum alloy plates were joined via double-pass FSW with the inclusion of 5 vol. % of nanoscale h-BN particles. Welding was performed with four rotational speeds (600, 800, 900, and 1000 rpm), three traversing speeds (30, 40, and 60 mm/min), and three distinct tool pin geometry (cylindrical, threaded cylindrical, and square), respectively. Besides, unreinforced and reinforced weldments were analyzed for mechanical properties like tensile strength and microhardness. Microstructural characterization was also carried out using FESEM and XRD techniques. The findings concluded that the reinforced samples welded using a cylindrical tool and double-pass strategy showcased homogenous distribution of nanoparticles with grain refinement, thereby exhibiting improved strength and hardness.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7565
Author(s):  
Supat Chupradit ◽  
Dmitry Olegovich Bokov ◽  
Wanich Suksatan ◽  
Michał Landowski ◽  
Dariusz Fydrych ◽  
...  

The friction stir welding (FSW) of tool pin geometry plays a critical role in the final properties of the produced joint. The tool pin geometry directly affects the generation of heat and the flow of internal materials during the FSW process. The effects of the FSW tool pin angle on heat generation and internal flow have not been quantitatively investigated in detail. In this manuscript, a validated Computational Fluid Dynamic (CFD) model was implemented to analyze the effects of pin angle on the thermo-mechanical action during the FSW process of AA5058 Al-Mg alloy. Experimental test results validate the thermal outcomes of the used model. The obtained results revealed that, when the pin angle is increased, the heat generation decreases while the mechanical action of the tool increases. The internal heat distribution at a higher pin angle is symmetrical. The higher mechanical action of the tool decreases the viscosity of the internal materials and increases stirring action (materials flow) around the pin. Furthermore, plastic flow near the tool increased stirring action and formed a larger stir zone in the joint area.


Author(s):  
C Ganesan ◽  
K Manonmani

Friction stir welding is a high potential technology for joining similar and dissimilar aluminum materials, utilized extensively in aerospace and automotive industrial applications to eradicate the problems like hot cracking, porosity, element loss, etc. due to the fusion welding process. This Research addresses the joining of two dissimilar materials of AA 5754 – H32 and AA 8090T6511 – Al-Li and their mechanical properties analysis with the effects of friction stir welding process parameters like tool rotational speed, welding speed and axial load on weld nugget zone formation quality. The significant roles of different tool pin profiles are also emphasized. A mathematical modeling equation was formed by using regression analysis to optimize the process parameter and found the best tool pin profile for defect-free weld nugget zone and higher tensile and hardness properties. This research also portrays the contribution of various pin profiles and each process parameter on the ultimate tensile strength by response surface methodology. The results indicate that the defect-free weld joints are observed with 1800 r/min of rotational speed, welding speed of 15 mm min−1 and 8.5 kN of axial load with hexagonal pin profile.


2021 ◽  
Vol 5 (4) ◽  
pp. 123
Author(s):  
Suppachai Chainarong ◽  
Rapeepan Pitakaso ◽  
Worapot Sirirak ◽  
Thanatkij Srichok ◽  
Surajet Khonjun ◽  
...  

This research presents a novel algorithm for finding the most promising parameters of friction stir welding to maximize the ultimate tensile strength (UTS) and maximum bending strength (MBS) of a butt joint made of the semi-solid material (SSM) ADC12 aluminum. The relevant welding parameters are rotational speed, welding speed, tool tilt, tool pin profile, and rotation. We used the multi-objective variable neighborhood strategy adaptive search (MOVaNSAS) to find the optimal parameters. We employed the D-optimal to find the regression model to predict for both objectives subjected to the given range of parameters. Afterward, we used MOVaNSAS to find the Pareto front of the objective functions, and TOPSIS to find the most promising set of parameters. The computational results show that the UTS and MBS of MOVaNSAS generate a 2.13% to 10.27% better solution than those of the genetic algorithm (GA), differential evolution algorithm (DE), and D-optimal solution. The optimal parameters obtained from MOVaNSAS were a rotation speed of 1469.44 rpm, a welding speed of 80.35 mm/min, a tool tilt of 1.01°, a cylindrical tool pin profile, and a clockwise rotational direction.


Author(s):  
Ravi Butola ◽  
◽  
Ravi Kumar ◽  
Naman Choudhary ◽  
Mohammad Zubair ◽  
...  

Friction stir processing (FSP) of Al7075-T6 and Boron Carbide(𝐵4𝐶) nanoparticles as reinforcement were performed adopting Taguchi’s 𝐿9 orthogonal array. Optimisation of parameters which are transverse speed (TS), tool rotational speed (TRS), and tool pin profile (TP) based on residual stress and microhardness was done using Taguchi and Grey Relational Analysis (GRA). Result showed that minimum compressive residual stress and maximum microhardness were obtained at TS of 40 mm/min, TRS of 1200 rpm, and square tool pin profile. Analysis of variance showed that TP+TS with 49.63% contribution is the most significant factor to influence residual stress and microhardness.


Sign in / Sign up

Export Citation Format

Share Document