Low-temperature NH3-SCR catalytic characteristic of Ce-Fe solid solutions based on rare earth concentrate

2020 ◽  
Vol 128 ◽  
pp. 110871
Author(s):  
Kai Zhang ◽  
Jingjing Wang ◽  
Pufang Guan ◽  
Na Li ◽  
Zhijun Gong ◽  
...  
RSC Advances ◽  
2018 ◽  
Vol 8 (24) ◽  
pp. 13537-13545 ◽  
Author(s):  
K. Yadagiri ◽  
R. Nithya ◽  
Shilpam Sharma ◽  
A. T. Satya

Solid solutions of rare earth ion (Eu3+) substituted DyMnO3, Dy1−xEuxMnO3 (x = 0.0–1.0) have been synthesized by ceramic method.


RSC Advances ◽  
2021 ◽  
Vol 11 (44) ◽  
pp. 27607-27619
Author(s):  
Na Li ◽  
Shenghan Zhang ◽  
Zedong Cheng ◽  
Wenfei Wu

The group has shown that Baiyun Ebo rare earth concentrate has excellent performance in NH3-SCR denitrification when used as a carrier, where rare earth elements are mainly present in cerium fluorocarbon ore (CeCO3F) and monazite (CePO4) mineral phases.


2020 ◽  
Vol 49 (42) ◽  
pp. 14985-14994
Author(s):  
Xu-Sheng Gao ◽  
Mei-Juan Ding ◽  
Jin Zhang ◽  
Li-Duo Zhao ◽  
Xiao-Ming Ren

All solid solutions (EuxY1−x-PTC, x = 0.013–0.82) are isomorphic to Eu-PTC, but different from Y-PTC, and show phase selectivity as well as excitation wavelength dependent emission.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 618
Author(s):  
Huan Du ◽  
Zhitao Han ◽  
Xitian Wu ◽  
Chenglong Li ◽  
Yu Gao ◽  
...  

Er-modified FeMn/TiO2 catalysts were prepared through the wet impregnation method, and their NH3-SCR activities were tested. The results showed that Er modification could obviously promote SO2 resistance of FeMn/TiO2 catalysts at a low temperature. The promoting effect and mechanism were explored in detail using various techniques, such as BET, XRD, H2-TPR, XPS, TG, and in-situ DRIFTS. The characterization results indicated that Er modification on FeMn/TiO2 catalysts could increase the Mn4+ concentration and surface chemisorbed labile oxygen ratio, which was favorable for NO oxidation to NO2, further accelerating low-temperature SCR activity through the “fast SCR” reaction. As fast SCR reaction could accelerate the consumption of adsorbed NH3 species, it would benefit to restrain the competitive adsorption of SO2 and limit the reaction between adsorbed SO2 and NH3 species. XPS results indicated that ammonium sulfates and Mn sulfates formed were found on Er-modified FeMn/TiO2 catalyst surface seemed much less than those on FeMn/TiO2 catalyst surface, suggested that Er modification was helpful for reducing the generation or deposition of sulfate salts on the catalyst surface. According to in-situ DRIFTS the results of, the presence of SO2 in feeding gas imposed a stronger impact on the NO adsorption than NH3 adsorption on Lewis acid sites of Er-modified FeMn/TiO2 catalysts, gradually making NH3-SCR reaction to proceed in E–R mechanism rather than L–H mechanism. DRIFTS.


1978 ◽  
Vol 9 (26) ◽  
Author(s):  
G.-Y. ADACHI ◽  
F. TONOMURA ◽  
Y. SHIBATA ◽  
J. SHIOKAWA

2021 ◽  
pp. 2100532
Author(s):  
Panjuan Tang ◽  
Stefano Livraghi ◽  
Elio Giamello ◽  
Sebastiano Garroni ◽  
Luca Malfatti ◽  
...  

2021 ◽  
Vol 13 (8) ◽  
pp. 4591
Author(s):  
Shuanglei Huang ◽  
Daishe Wu

The tremendous input of ammonium and rare earth element (REE) ions released by the enormous consumption of (NH4)2SO4 in in situ leaching for ion-adsorption RE mining caused serious ground and surface water contamination. Anaerobic ammonium oxidation (anammox) was a sustainable in situ technology that can reduce this nitrogen pollution. In this research, in situ, semi in situ, and ex situ method of inoculation that included low-concentration (0.02 mg·L−1) and high-concentration (0.10 mg·L−1) lanthanum (La)(III) were adopted to explore effective start-up strategies for starting up anammox reactors seeded with activated sludge and anammox sludge. The reactors were refrigerated for 30 days at 4 °C to investigate the effects of La(III) during a period of low-temperature. The results showed that the in situ and semi in situ enrichment strategies with the addition of La(III) at a low-concentration La(III) addition (0.02 mg·L−1) reduced the length of time required to reactivate the sludge until it reached a state of stable anammox activity and high nitrogen removal efficiency by 60–71 days. The addition of La(III) promoted the formation of sludge floc with a compact structure that enabled it to resist the adverse effects of low temperature and so to maintain a high abundance of AnAOB and microbacterial community diversity of sludge during refrigeration period. The addition of La(III) at a high concentration caused the cellular percentage of AnAOB to decrease from 54.60 ± 6.19% to 17.35 ± 6.69% during the enrichment and reduced nitrogen removal efficiency to an unrecoverable level to post-refrigeration.


2021 ◽  
Vol 49 (1) ◽  
pp. 113-120
Author(s):  
Dong-jie YAN ◽  
Tong GUO ◽  
Ya YU ◽  
Zhao-hui CHEN

Sign in / Sign up

Export Citation Format

Share Document