A facile method to coat mesoporous silica layer on carbon nanotubes by anionic surfactant

2010 ◽  
Vol 64 (12) ◽  
pp. 1383-1386 ◽  
Author(s):  
Min Zhang ◽  
Xihao Zhang ◽  
Xiwen He ◽  
Langxing Chen ◽  
Yukui Zhang
Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1346
Author(s):  
Andreas Breitwieser ◽  
Uwe B. Sleytr ◽  
Dietmar Pum

Homogeneous and stable dispersions of functionalized carbon nanotubes (CNTs) in aqueous solutions are imperative for a wide range of applications, especially in life and medical sciences. Various covalent and non-covalent approaches were published to separate the bundles into individual tubes. In this context, this work demonstrates the non-covalent modification and dispersion of pristine multi-walled carbon nanotubes (MWNTs) using two S-layer proteins, namely, SbpA from Lysinibacillus sphaericus CCM2177 and SbsB from Geobacillus stearothermophilus PV72/p2. Both the S-layer proteins coated the MWNTs completely. Furthermore, it was shown that SbpA can form caps at the ends of MWNTs. Reassembly experiments involving a mixture of both S-layer proteins in the same solution showed that the MWNTs were primarily coated with SbsB, whereas SbpA formed self-assembled layers. The dispersibility of the pristine nanotubes coated with SbpA was determined by zeta potential measurements (−24.4 +/− 0.6 mV, pH = 7). Finally, the SbpA-coated MWNTs were silicified with tetramethoxysilane (TMOS) using a mild biogenic approach. As expected, the thickness of the silica layer could be controlled by the reaction time and was 6.3 +/− 1.25 nm after 5 min and 25.0 +/− 5.9 nm after 15 min. Since S-layer proteins have already demonstrated their capability to bind (bio)molecules in dense packing or to act as catalytic sites in biomineralization processes, the successful coating of pristine MWNTs has great potential in the development of new materials, such as biosensor architectures.


2016 ◽  
Vol 120 (36) ◽  
pp. 20378-20386 ◽  
Author(s):  
Petro Lutsyk ◽  
Yuri Piryatinski ◽  
Mohammed AlAraimi ◽  
Raz Arif ◽  
Mykola Shandura ◽  
...  

Nanomaterials ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 35 ◽  
Author(s):  
Anna Mutschler ◽  
Vivian Stock ◽  
Lena Ebert ◽  
Emma Björk ◽  
Kerstin Leopold ◽  
...  

Trace-level detection of mercury in waters is connected with several complications including complex multistep analysis routines, applying additional, harmful reagents increasing the risk of contamination, and the need for expensive analysis equipment. Here, we present a straightforward reagent-free approach for mercury trace determination using a novel thin film sampling stick for passive sampling based on gold nanoparticles. The nanoparticles supported on a silicon wafer and further covered with a thin layer of mesoporous silica. The mesoporous silica layer is acting as a protection layer preventing gold desorption upon exposure to water. The gold nanoparticles are created by thermal treatment of a homogenous gold layer on silicon wafer prepared by vacuum evaporation. This gold-covered substrate is subsequently covered by a layer of mesoporous silica through dip-coating. Dissolved mercury ions are extracted from a water sample, e.g., river water, by incorporation into the gold matrix in a diffusion-controlled manner. Thus, the amount of mercury accumulated during sampling depends on the mercury concentration of the water sample, the accumulation time, as well as the size of the substrate. Therefore, the experimental conditions can be chosen to fit any given mercury concentration level without loss of sensitivity. Determination of the mercury amount collected on the stick is performed after thermal desorption of mercury in the gas phase using atomic fluorescence spectrometry. Furthermore, the substrates can be re-used several tens of times without any loss of performance, and the batch-to-batch variations are minimal. Therefore, the nanogold-mesoporous silica sampling substrates allow for highly sensitive, simple, and reagent-free determination of mercury trace concentrations in waters, which should also be applicable for on-site analysis. Successful validation of the method was shown by measurement of mercury concentration in the certified reference material ORMS-5, a river water.


2012 ◽  
Vol 1451 ◽  
pp. 97-102 ◽  
Author(s):  
Erica F. Antunes ◽  
Viviane Q. da Silva ◽  
Vagner E. C. Marques ◽  
Lilian Siqueira ◽  
Evaldo J. Corat

ABSTRACTCeramic barriers avoid catalyst diffusion to produce better multiwall carbon nanotubes (CNT) on carbon fiber fabrics (CF). We developed a simple method to produce efficiently a silica layer from TEOS pyrolysis at similar conditions of CNT growth from camphor and ferrocene mixtures. This protective layer prevents iron diffusion and allows the vertical alignment of CNTs.


2012 ◽  
Vol 101A (1) ◽  
pp. 213-221 ◽  
Author(s):  
M. Vila ◽  
M. Cicuéndez ◽  
J. Sánchez-Marcos ◽  
V. Fal-Miyar ◽  
M. Manzano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document