Fe-doped ZnO nanoparticles: Synthesis by a modified sol–gel method and characterization

2015 ◽  
Vol 159 ◽  
pp. 84-86 ◽  
Author(s):  
Mariani A. Ciciliati ◽  
Marcela F. Silva ◽  
Daniela M. Fernandes ◽  
Mauricio A.C. de Melo ◽  
Ana Adelina W. Hechenleitner ◽  
...  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Savka Janković ◽  
Dragana Milisavić ◽  
Tanja Okolić ◽  
Dijana Jelić

Zinc oxide is a highly applicable semiconductor material. Wide applica-tion of this nanomaterial is connected to wide spectrum of energy band gap, high bond en-ergy, great thermal conductivity, but also with its non-toxicity, antibacterial activity, bio-compatibility and biodegradability characteristics. The aim of this paper is synthesis and characterization of silver doped ZnO nanoparticles (ZnO:Ag NP) using sol-gel method. Ob-tained samples of silver doped ZnO nanoparticles were characterized by following tech-niques: Fourier-transform infrared spectroscopy (FTIR), UV/VIS spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spec-troscopy (EDX). Efficiency of provided synthesis method was examined by FTIR spectros-copy. XRD determined the purity and crystallinity, and wurtzite structure of synthesized material. Surface morphology and the effect of doping were examined using SEM and EDX characterization methods. Results showed better conductivity after doping ZnO nanoparti-cles with silver. SEM micrographs showed ZnO:Ag NP in the form of nanorods with a par-ticle average size of 6 nm.


2013 ◽  
Vol 6 (4) ◽  
pp. 324 ◽  
Author(s):  
Talaat M. Hammad ◽  
Stefan Griesing ◽  
Matthias Wotocek ◽  
Sylvia Kuhn ◽  
Rolf Hempelmann ◽  
...  

2019 ◽  
Vol 64 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Behnam Khanizadeh ◽  
Morteza Khosravi ◽  
Mohammad A. Behnajady ◽  
Ali Shamel ◽  
Behrouz Vahid

In this study, La and Mg doped, and co-doped ZnO nanoparticles were prepared using the sol-gel method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and N2 physisorption techniques. The XRD results indicated that the prepared nanoparticles can be well adopted by the hexagonal wurtzite structure crystal and there are no second impurity peaks. Studies of the FESEM, EDX and TEM have shown that the samples have uniform spherical-like morphology with a homogenous distribution. The incorporation of La and Mg into the ZnO lattice had no effect on the morphology of the nanoparticles, but a reduction in the size of the grains (≈ 14 nm to ≈ 7 nm) was observed due to the insertion of these ions. The results of N2 physisorption indicated that there was an increase in BET surface area and pore volume for doped and co-doped samples. The results of DRS showed an increase in band gap energy and a blue shift at the absorption edge for doped and co-doped samples. The photocatalytic activity of the prepared catalysts was evaluated in the removal of RhB under UVA irradiation. The results showed that Mg5%-La5%/ZnO had the highest photoactivity (91.18 %) among all samples.


Sign in / Sign up

Export Citation Format

Share Document