Influence of grain boundary character distribution and random high angle grain boundaries networks on intergranular corrosion in high purity copper

2019 ◽  
Vol 253 ◽  
pp. 424-426 ◽  
Author(s):  
Yuan Yuan ◽  
Youdong Jiang ◽  
Jiang Zhou ◽  
Guoyong Liu ◽  
Xiao Ren
Author(s):  
Tadao Watanabe

As demonstrated early 1980’s (1), the scanning electron rnicrocopy-electron channelling pattern (SEM-ECP) technique is very powerful in determination of orientation of individual grains and the character of grain boundaries in polycrystalline materials. Figure 1(a) and (b) show SEM and ECP images of a grain boundary in polycrystal line iron-6.5 mass % silicon ribbon produced by rapid solidification and subsequent annealing. We can intuitively recognize from the SEM-ECP image that the character of the boundary is of <100> tilt type with about 7° misorientation angle. This kind of direct observation is very useful for a study of grain boundary migration and grain growth.This paper discusses advantages of the SEM-ECP technique for the precise determination of the character of grain boundary and for statistical analysis of grain boundaries to bridge roles of individual grain boundaries and bulk properties in a polycrystal. The new microstructural parameter associated with grin boundary termed “grain boundary character distribution (GBCD)” which was introduced by the present author (2,3) and has been utilized in designing and engineering grain boundaries in order to produce desirable and/or high bulk performance in polycrystalline materials (4,5). GBCD describes the type and the frequency of different types of grain boundaries, ie. random general boundaries and special boundaries like low-angle boundaries and low Σ coincidence boundaries.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1110-1115 ◽  
Author(s):  
XIAOYING FANG ◽  
WEIGUO WANG ◽  
HONG GUO ◽  
CONGXIANG QIN ◽  
BANGXIN ZHOU

Grain boundary character distribution (GBCD) and triple junction character distribution (TJCD) in a 304 stainless steel cold rolled with the thickness reduction of 6% and then annealed at 1323K for 5 minutes(GBE process) were analyzed by electron back scatter diffraction (EBSD). The intergranular corrosion (IGC) resistance of various triple junctions and grain boundaries were evaluated after sensitization treatment at 1073K for 30 minutes. The results showed special TJ containing 2 or 3 CSL boundaries exhibit higher resistance to IGC than other TJs. In addition, the {411} and {221} symmetrical tilt grain boundaries (STGBs) are more resistant to intergranular corrosion for Σ9 boundaries.


2009 ◽  
Vol 1215 ◽  
Author(s):  
Shinichiro Yamashita ◽  
Yasuhide Yano ◽  
Ryusuke Tanikawa ◽  
Norihito Sakaguchi ◽  
Seiichi Watanabe ◽  
...  

AbstractGrain boundary character distribution-optimized (GBCD) Type 316 corresponding austenitic stainless steel and its cold-worked ones (GBCD+CW) are one of prospective nuclear materials to be considered for next generation energy systems. These steels were thermally-aged at 973 K for 1 and 100 h and were examined by transmission electron microscopy (TEM) to evaluate microstructural stability during high temperature exposure. TEM results revealed that microstructures of both specimens prior to ageing contained step-wise boundaries which is composed of coincidence site lattice (CSL) and random grain boundaries and also that the GBCD+CW specimens had dislocation cells and networks as well as deformation twins whereas as the GBCD one possessed few dislocations. After thermal ageing, the precipitates formed on not only random grain boundaries but also dislocations, contributing to prevent significant microstructural change occurring such as recrystallization and dislocation recovery.


Sign in / Sign up

Export Citation Format

Share Document