grain structure
Recently Published Documents


TOTAL DOCUMENTS

2320
(FIVE YEARS 563)

H-INDEX

66
(FIVE YEARS 11)

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 159
Author(s):  
Nicholas Olynik ◽  
Bin Cheng ◽  
David J. Sprouster ◽  
Chad M. Parish ◽  
Jason R. Trelewicz

Exploiting grain boundary engineering in the design of alloys for extreme environments provides a promising pathway for enhancing performance relative to coarse-grained counterparts. Due to its attractive properties as a plasma facing material for fusion devices, tungsten presents an opportunity to exploit this approach in addressing the significant materials challenges imposed by the fusion environment. Here, we employ a ternary alloy design approach for stabilizing W against recrystallization and grain growth while simultaneously enhancing its manufacturability through powder metallurgical processing. Mechanical alloying and grain refinement in W-10 at.% Ti-(10,20) at.% Cr alloys are accomplished through high-energy ball milling with transitions in the microstructure mapped as a function of milling time. We demonstrate the multi-modal nature of the resulting nanocrystalline grain structure and its stability up to 1300 °C with the coarser grain size population correlated to transitions in crystallographic texture that result from the preferred slip systems in BCC W. Field-assisted sintering is employed to consolidate the alloy powders into bulk samples, which, due to the deliberately designed compositional features, are shown to retain ultrafine grain structures despite the presence of minor carbides formed during sintering due to carbon impurities in the ball-milled powders.


Author(s):  
Kirstin Riener ◽  
Tino Pfalz ◽  
Florian Funcke ◽  
Gerhard Leichtfried

AbstractThe growing demand for more materials available for the LPBF-process, in particular high-strength aluminum alloys, is evident in the market. In the present work, a systematic investigation of the processability of aluminum 6182 series alloys, using LPBF, was carried out. For this purpose, the influence of process parameters, especially of enhanced preheating by heating the substrate plate during the LPBF process, on the microstructure of EN AW 6182 specimens was studied.Experiments were conducted at different preheating temperatures always using the same d-optimal design-of-experiments, the laser power, scanning speed, hatch distance, and laser focus position being varied over a wide range.It was found that the preheating temperature has the strongest impact on hot cracking. Higher temperatures result in a significantly reduced number of hot cracks in the microstructure. Moreover, an equiaxed microstructure of the specimens manufactured can be observed at preheating temperatures of 500 °C. In addition to the preheating temperature, the achievable part density is most strongly affected by the laser focus position and the laser power, whereas the hatch distance shows no discernible impact on the part density. Furthermore, neither the hatch distance nor the laser focus position shows any significant effect on hot cracking.In combination with the optimal scanning parameters, crack-free parts with a fully equiaxed grain structure and densities > 99.0% can be manufactured via LPBF at a preheating temperature of 500 °C.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 142
Author(s):  
Minghao Guo ◽  
Ming Sun ◽  
Junhui Huang ◽  
Song Pang

Fabrication condition greatly influences the microstructures and properties of Al alloys. However, most of the available reports focus on a single fabrication technique, indicating there is still a lack of systematic comparisons among wider ranges of fabrication methods. In this paper, with conventional casting (via sand/Fe/Cu mold) and additive manufacturing (AM, via selective laser melting, SLM) methods, the effects of cooling rate (Ṫ) on the microstructures and mechanical properties of hypoeutectic Al-10Si-0.5Mg alloy are systematically investigated. The results show that with increasing cooling rate from sand-mold condition to SLM condition, the grain size (d) is continuously refined from ~3522 ± 668 μm to ~10 μm, and the grain morphology is gradually refined from coarse dendrites to a mixed grain structure composed of columnar plus fine grains (~10 μm). The eutectic Si particles are effectively refined from blocky shape under sand/Fe-mold conditions to needle-like under Cu-mold conditions, and finally to fine fibrous network under SLM condition. The tensile yield strength and elongation is greatly improved from 125 ± 5 MPa (sand-mold) to 262 ± 3 MPa (SLM) and from 0.8 ± 0.2% (sand-mold) to 4.0 ± 0.2% (SLM), respectively. The strengthening mechanism is discussed, which is mainly ascribed to the continuous refinement of grains and Si particles and an increase in super-saturation of Al matrix with increasing cooling rate.


2022 ◽  
Vol 906 ◽  
pp. 31-37
Author(s):  
Smbat V. Mazmanyan ◽  
Gayane Papyan ◽  
Tamara Sargsyan ◽  
Armine Baghdagyulyan ◽  
Tatevik Paytyan ◽  
...  

The paper presents the study of morphological characteristics of cement particles and reveals the influence of the structure of the cement grain composition on the physical and mechanical properties of cement. The following portland cements produced by “Hrazdan Cement Corporation” LLC, which have 52,5 MPa and 42,5 MPa compressive strength limit and hydraulic additives up to 20% and over 20% have been used for the experiment: CEM II/ A-P 42,5N, CEM II/ B-P 42,5N, CEM II/A-Q 42,5N, CEM II/B-Q, CEM II/A-L 42,5N, CEM II/B-L 42,5N, CEM II/A-M 42,5N, CEM II/B-M, CEM III/A-S 42,5N and CEM III/B-S 42,5N. Grain distribution in all the samples has been studied using a CILAS laser analyzer. Microscopic analysis of all the fractions has been carried out with the help of James Swift optical microscope. The given grain compositions have undergone chemical analysis in compliance with the requirements of interstate ISO 5382-2019 and ASTM C114-18 standards. Experimental studies and analyses show that the cements with microsilica have the highest value of water-cement ratio-W/C = 0.7, the highest by volume compression are the cements with volcanic slag-4 mm, the beginning of the bonding period is the longest in case of limestone cements - t = 140 minutes, followed by microsilica cements, and in third place there are artificial slag cements, the results of which are as follows: 130; 124 minutes. The summarized data show that microsilica cements have the highest compressive strength limit among the cements having the same percentage of additives-48.87 MPa.


Author(s):  
Austin A. Ward ◽  
Donovan N. Leonard ◽  
Hans-Henrik König ◽  
Greta Lindwall ◽  
Zachary C. Cordero

AbstractUltrasonic additive manufacturing has been used to fabricate laminated composites of commercially pure aluminum and a nanocrystalline nickel–cobalt (nc-NiCo) alloy. The nc-NiCo alloy would not weld to itself but readily welded to aluminum. Thus, by alternating between foils of nc-NiCo and Al, we achieved multi-material laminates with strong interlayer bonding. Electron microscopy showed that the nanoscale grain structure of the nc-NiCo was preserved during deposition and that the nc-NiCo/Al weld interface was decorated with comminuted surface oxides as well as Al–Ni–Co intermetallics. These findings are considered in light of process models of junction growth, interdiffusion, and grain growth, which together reveal how the different pressure- and temperature dependences of these phenomena give rise to a range of processing conditions that maximize bonding while minimizing coarsening and intermetallic formation. This analysis quantitatively demonstrates that using a soft, low melting point interlayer material decouples junction growth at the weld interface from grain growth in the nc-NiCo, expanding the range of optimal processing conditions. Graphical abstract


2022 ◽  
Vol 12 (2) ◽  
pp. 532
Author(s):  
Jonathan Singh ◽  
Katherine Tant ◽  
Anthony Mulholland ◽  
Charles MacLeod

The ability to reliably detect and characterise defects embedded in austenitic steel welds depends on prior knowledge of microstructural descriptors, such as the orientations of the weld’s locally anisotropic grain structure. These orientations are usually unknown but it has been shown recently that they can be estimated from ultrasonic scattered wave data. However, conventional algorithms used for solving this inverse problem incur a significant computational cost. In this paper, we propose a framework which uses deep neural networks (DNNs) to reconstruct crystallographic orientations in a welded material from ultrasonic travel time data, in real-time. Acquiring the large amount of training data required for DNNs experimentally is practically infeasible for this problem, therefore a model based training approach is investigated instead, where a simple and efficient analytical method for modelling ultrasonic wave travel times through given weld geometries is implemented. The proposed method is validated by testing the trained networks on data arising from sophisticated finite element simulations of wave propagation through weld microstructures. The trained deep neural network predicts grain orientations to within 3° and in near real-time (0.04 s), presenting a significant step towards realising real-time, accurate characterisation of weld microstructures from ultrasonic non-destructive measurements. The subsequent improvement in defect imaging is then demonstrated via use of the DNN predicted crystallographic orientations to correct the delay laws on which the total focusing method imaging algorithm is based. An improvement of up to 5.3 dB in the signal-to-noise ratio is achieved.


2022 ◽  
Author(s):  
I. Pelevin

Abstract. The study was aimed at microstructure investigations of melt-spun rare-earth intermetallic compounds using atomic force microscopy. Surface morphology of R2Fe14B (R = Y, Nd, Gd, Er) was studied with nanometric resolution. Grain structure features were discovered depending on the rare-earth element composition and quenching regime. Grain size dependence on rare earth elements' composition decreased with the metal's serial number and atomic weight. Wherein structural size dependence on quenching wheel speed had non-linear character: increase the speed from 20 to 30 m/s led to 3 times decrease of the grain size and significant surface roughness reduction.


2022 ◽  
Vol 1048 ◽  
pp. 254-260
Author(s):  
Kaushik V. Prasad ◽  
H. Adarsha

Al2O3, Al2O3-10%CeO2 and Al2O3 – 20% CeO2 coatings were deposited on Mg AZ91 alloy by High Velocity Oxy Fuel (HVOF) process. The microstructure of deposited coatings was characterized by scanning electron microscopy and x-ray diffraction. Nano-indentation tests were performed on deposited coatings to determine its load bearing capacity and elastic recovery. Al2O3 coatings exhibited coarse grain structure with porous sites. While addition of CeO2 promoted grain refinement in the coatings. A load of 100mN was applied on all the samples for nano-indentation test. Coating with 20%CeO2 exhibited maximum load bearing capacity of 98.7mN with elastic recovery displacement of 1000 nm.


Author(s):  
Hui Fang ◽  
Stephanie Lippmann ◽  
Qingyu Zhang ◽  
Mingfang Zhu ◽  
Markus Rettenmayr

Microstructural evolution in the presence of liquid film migration (LFM) is simulated for Al-Cu alloys using a cellular automaton (CA) model. Simulations are performed for the microstructural evolution and concentration distribution in an Al-4 wt.%Cu alloy with initially equiaxed grain structures holding in a temperature gradient. A slight deviation from local equilibrium, estimated from experimental data, is considered to be the driving force for LFM. The direction of LFM is triggered by concentration fluctuations setting a concentration gradient as a further driving force. The simulation successfully reproduces the experimentally observed microstructures generated by LFM accompanied by a particle free zone behind the liquid film. The solid concentration in the particle free zone is found to be the equilibrium solid concentration. The simulated concentration profile across the migrating liquid film agrees well with experimental measurements. The simulated grain structure becomes coarser and highly elongated after holding in the temperature gradient. The results reveal that the increase in transversal grain width is mainly controlled by LFM, while the grain elongation in longitudinal direction is attributed to both LFM and temperature gradient zone melting. The solid concentration decreases from the initial (supersaturated) composition to the local equilibrium solid concentration corresponding to the local temperature. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.


Sign in / Sign up

Export Citation Format

Share Document