alloy 690
Recently Published Documents


TOTAL DOCUMENTS

379
(FIVE YEARS 60)

H-INDEX

34
(FIVE YEARS 6)

2021 ◽  
pp. 110073
Author(s):  
R. Katona ◽  
A. Rivonkar ◽  
R. Locskai ◽  
G. Bátor ◽  
A. Abdelouas ◽  
...  
Keyword(s):  

Author(s):  
Seongin Moon ◽  
Jong-Min Kim ◽  
Joon-Yeop Kwon ◽  
Bong-Sang Lee ◽  
Kwon-Jae Choi ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5778
Author(s):  
Long Xin ◽  
Lanzheng Kang ◽  
Weiwei Bian ◽  
Mengyang Zhang ◽  
Qinglei Jiang ◽  
...  

The effect of displacement amplitude on fretting wear behavior and damage mechanisms of alloy 690 in air and nitrogen atmospheres was investigated in detail. The results showed that in air, the friction coefficient gradually increased with the increase in displacement amplitude which conformed to the universal law. In nitrogen, however, it had the highest point at the displacement amplitude of 60 μm due to very strong adhesion. Whether in air or nitrogen, the wear volume gradually increased with the increase in displacement amplitude. The wear volume in air was larger than that in nitrogen except at 30 μm. At 30 μm, the wear volume in air was slightly smaller. With an increase in displacement amplitude, a transformation of fretting running status between partial slip, mixed stick-slip, and final gross slip occurred along with the change of Ft-D curves from linear, to elliptic, to, finally, parallelogrammical. Correspondingly, the fretting regime changed from a partial slip regime to a mixed regime to a gross slip regime. With the increase in displacement amplitude, the transition from partial slip to gross slip in nitrogen was delayed as compared with in air due to the strong adhesion actuated by low oxygen content in a reducing environment. Whether in air or nitrogen, the competitive relation between fretting-induced fatigue and fretting-induced wear was prominent. The cracking velocity was more rapid than the wear. Fretting-induced fatigue dominated at 30 μm in air but at 30–60 μm in nitrogen. Fretting-induced wear won the competition at 45–90 μm in air but at 75–90 μm in nitrogen.


2021 ◽  
pp. 117453
Author(s):  
Zhao Shen ◽  
Edward Roberts ◽  
Naganand Saravanan ◽  
Phani Karamched ◽  
Takumi Terachi ◽  
...  

Author(s):  
Jongmin Kim ◽  
Min-Chul Kim ◽  
Joonyeop Kwon

Abstract The materials used previously for steam generator tubes around the world have been replaced and will be replaced by Alloy 690 given its improved corrosion resistance relative to that of Alloy 600. However, studies of the high- temperature creep and creep-rupture characteristics of steam generator tubes made of Alloy 690 are insufficient compared to those focusing on Alloy 600. In this study, several creep tests were conducted using half tube shape specimens of the Alloy 690 material at temperatures ranging from 650 to 850C and stresses in the range of 30 to 350 MPa, with failure times to creep rupture ranging from 3 to 870 hours. Based on the creep test results, creep life predictions were then made using the well-known Larson Miller Parameter method. Steam generator tube rupture tests were also conducted under the conditions of a constant temperature and pressure ramp using steam generator tube specimens. The rupture test equipment was designed and manufactured to simulate the transient state (rapid temperature and pressure changes) in the event of a severe accident condition. After the rupture test, the damage to the steam generator tubes was predicted using a creep rupture model and a flow stress model. A modified creep rupture model for Alloy 690 steam generator tube material is proposed based on the experimental results. A correction factor of 1.7 in the modified creep rupture model was derived for the Alloy 690 material. The predicted failure pressure was in good agreement with the experimental failure pressure.


2021 ◽  
Author(s):  
Bogdan Alexandreanu ◽  
Yiren Chen ◽  
Xuan Zhang ◽  
Wei-Ying Chen

Sign in / Sign up

Export Citation Format

Share Document