triple junctions
Recently Published Documents


TOTAL DOCUMENTS

407
(FIVE YEARS 61)

H-INDEX

33
(FIVE YEARS 3)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 302
Author(s):  
Oleh Shpotyuk ◽  
Adam Ingram ◽  
Catherine Boussard-Pledel ◽  
Bruno Bureau ◽  
Zdenka Lukáčová Bujňáková ◽  
...  

The possibilities surrounding positronics, a versatile noninvasive tool employing annihilating positrons to probe atomic-deficient sub-nanometric imperfections in a condensed matter, are analyzed in application to glassy arsenoselenides g-AsxSe100−x (0 < x < 65), subjected to dry and wet (in 0.5% PVP water solution) nanomilling. A preliminary analysis was performed within a modified two-state simple trapping model (STM), assuming slight contributions from bound positron–electron (Ps, positronium) states. Positron trapping in g-AsxSe100−x/PVP nanocomposites was modified by an enriched population of Ps-decay sites in PVP. This was proven within a three-state STM, assuming two additive inputs in an overall trapping arising from distinct positron and Ps-related states. Formalism of x3-x2-CDA (coupling decomposition algorithm), describing the conversion of Ps-decay sites into positron traps, was applied to identify volumetric nanostructurization in wet-milled g-As-Se, with respect to dry-milled ones. Under wet nanomilling, the Ps-decay sites stabilized in inter-particle triple junctions filled with PVP replaced positron traps in dry-milled substances, the latter corresponding to multi-atomic vacancies in mostly negative environments of Se atoms. With increased Se content, these traps were agglomerated due to an abundant amount of Se-Se bonds. Three-component lifetime spectra with nanostructurally- and compositionally-tuned Ps-decay inputs and average lifetimes serve as a basis to correctly understand the specific “rainbow” effects observed in the row from pelletized PVP to wet-milled, dry-milled, and unmilled samples.


2021 ◽  
Vol 122 (12) ◽  
pp. 1173-1182
Author(s):  
D. Yu. Vasilenko ◽  
A. V. Shitov ◽  
D. Yu. Bratushev ◽  
K. I. Podkorytov ◽  
V. S. Gaviko ◽  
...  

Abstract Magnetic properties and microstructure of high-energy (Nd,Dy)–Fe–B magnets with Dy of no more than 1 wt % prepared via a low-oxygen routine are studied. Oxygen content in magnets does not exceed 0.20 wt %. 0.5 wt %–Dy addition reliably stabilizes the coercivity MHc higher than 13 kOe; in this case, the maximum energy density product (BH)max of magnets is 48.5–49.5 MG Oe. High magnetic hysteresis properties are gained via optimization of chemical and phase compositions of magnets, as well as their microstructure. The grain size of the main Nd2Fe14B phase is approximately 3.5 μm; and according to X-ray analysis, the weight fraction of additional Nd-rich phases (NdOx and Nd2O3) does not exceed 2.5%. Scanning electron microscopy study has demonstrated that in triple junctions of Nd2Fe14B grains there are two types of inclusions (В and С) of the NdOx phase, which significantly differ by their chemical composition. С-phase inclusions with low oxygen content (х ≈ 0.03) are enriched in Fe (40–50 wt %); whereas, В-phase with high oxygen content (х ≈ 0.70) contains 3–5 times less Fe. The angular dependences of coercivity of (Nd,Dy)–Fe–B magnets are presented.


2021 ◽  
Vol 127 (22) ◽  
Author(s):  
M. Torabi Rad ◽  
G. Boussinot ◽  
M. Apel

2021 ◽  
Vol 11 (11) ◽  
pp. 1841-1855
Author(s):  
Alexandre Melhorance Barboza ◽  
Ivan Napoleão Bastos ◽  
Luis César Rodríguez Aliaga

The grain size refinement of metallic materials to the nanometer scale produces interesting properties compared to the coarse-grained counterparts. Their mechanical behavior, however, cannot be explained by the classical deformation mechanisms. Using molecular dynamics simulations, the present work examines the influence of grain size on the deformation mechanisms and mechanical properties of nanocrystalline nickel. Samples with grain sizes from 3.2 to 24.1 nm were created using the Voronoi tessellation method and simulated in tensile and relaxation tests. The yield and ultimate tensile stresses follow an inverse Hall-Petch relationship for grain sizes below ca. 20 nm. For samples within the conventional Hall-Petch regime, no perfect dislocations were observed. Nonetheless, a few extended dislocations were nucleated from triple junctions, suggesting that the suppression of conventional slip mechanism is not uniquely responsible for the inverse Hall-Petch behavior. For samples respecting the inverse Hall-Petch regime, the high number of triple junctions and grain boundaries allowed grain rotation, grain boundary sliding, and diffusion-like behavior that act as competitive deformation mechanisms. For all samples, the atomic configuration analysis showed that Shockley partial dislocations are nucleated at grain boundaries, crossing the grain before being absorbed in opposite grain boundaries, leaving behind stacking faults. Interestingly, the stress relaxation tests showed that the strain rate sensitivity decreases with grain size for a specific grain size range, whereas for grains below approximately 10 nm, the strain rate sensitivity increases as observed experimentally. Repeated stress relaxation tests were also performed to obtain the effective activation volume parameter. However, the expected linear trend in pertinent plots required to obtain this parameter was not found.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5522
Author(s):  
Kai-Cheng Shie ◽  
Po-Ning Hsu ◽  
Yu-Jin Li ◽  
Dinh-Phuc Tran ◽  
Chih Chen

The failure mechanisms of Cu–Cu bumps under thermal cycling test (TCT) were investigated. The resistance change of Cu–Cu bumps in chip corners was less than 20% after 1000 thermal cycles. Many cracks were found at the center of the bonding interface, assumed to be a result of weak grain boundaries. Finite element analysis (FEA) was performed to simulate the stress distribution under thermal cycling. The results show that the maximum stress was located close to the Cu redistribution lines (RDLs). With the TiW adhesion layer between the Cu–Cu bumps and RDLs, the bonding strength was strong enough to sustain the thermal stress. Additionally, the middle of the Cu–Cu bumps was subjected to tension. Some triple junctions with zig-zag grain boundaries after TCT were observed. From the pre-existing tiny voids at the bonding interface, cracks might initiate and propagate along the weak bonding interface. In order to avoid such failures, a postannealing bonding process was adopted to completely eliminate the bonding interface of Cu–Cu bumps. This study delivers a deep understanding of the thermal cycling reliability of Cu–Cu hybrid joints.


2021 ◽  
Author(s):  
Hany Khalil ◽  
Fabio Capitanio ◽  
Alexander Cruden

Divergent triple junctions are stable plate margins where three spreading ridges meet. Although it is accepted that this configuration is inherited from an earlier phase of continental rifting, how post-breakup triple junctions emerge from the separation of two plates remains unclear. By documenting the strain rate history recorded in the three rift-arms of several modern and ancient triple junctions, we show that deformation is episodic and localized in only one or two rifts at any given time. We further investigate this behavior in three-dimensional (3D) analog experiments of rifting, under a range of kinematic boundary conditions and containing a variety of pre-existing lithospheric heterogeneities. Deformation in the experiments is characterized by strain jumps and rift abandonment, comparable to natural observations. Boundary rotation during extension induces oblique stretching directions, along-strike strain gradients and forces significant strain jump to reduce the number of rifts segments active. Models that comprise lithospheres ranging from homogenous to containing a triple junction-like pre-existing heterogeneities, never developed a three-armed rift, where all rift segments are active at same time, at any stage. Our experimental results indicate that, unlike mature, successful, and stable oceanic triple junctions, early-stage continental rifting progresses through unstable “double-junctions” characterized by repeated strain jumps and rift failures and reactivations.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5084
Author(s):  
Gaetano Palumbo ◽  
Dawid Dunikowski ◽  
Roma Wirecka ◽  
Tomasz Mazur ◽  
Urszula Lelek-Borkowska ◽  
...  

The corrosion behavior of two silicon steels with the same chemical composition but different grains sizes (i.e., average grain area of 115.6 and 4265.9 µm2) was investigated by metallographic microscope, gravimetric, electrochemical and surface analysis techniques. The gravimetric and electrochemical results showed that the corrosion rate increased with decreasing the grain size. The scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopyanalyses revealed formation of a more homogeneous and compact corrosion product layer on the coarse-grained steel compared to fine-grained material. The Volta potential analysis, carried out on both steels, revealed formation of micro-galvanic sites at the grain boundaries and triple junctions. The results indicated that the decrease in corrosion resistance in the fine-grained steel could be attributed to the higher density of grain boundaries (e.g., a higher number of active sites and defects) brought by the refinement. The higher density of active sites at grain boundaries promote the metal dissolution of the and decreased the stability of the corrosion product layerformed on the metal surface.


Author(s):  
Georg J. Schmitz

Mereotopology is a concept rooted in analytical philosophy. The phase-field concept is based on mathematical physics and finds applications in materials engineering. The two concepts seem to be disjoint at a first glance. While mereotopology qualitatively describes static relations between things like x isConnected y (topology) or x isPartOf y (mereology) by first order logic and Boolean algebra, the phase-field concept describes the geometric shape of things and its dynamic evolution by drawing on a scalar field. The geometric shape of any thing is defined by its boundaries to one or more neighboring things. The notion and description of boundaries thus provides a bridge between mereotopology and the phase-field concept. The present article aims to relate phase-field expressions describing boundaries and especially triple junctions to their Boolean counterparts in mereotopology and contact algebra. An introductory overview on mereotopology is followed by an introduction to the phase-field concept already indicating first relations to mereo- topology. Mereotopological axioms and definitions are then discussed in detail from a phase-field perspective. A dedicated section introduces and discusses further notions of the isConnected relation emerging from the phase-field perspective like isSpatiallyConnected, isTemporallyConnected, isPhysicallyConnected, isPathConnected and wasConnected. Such relations introduce dynamics and thus physics into mereotopology as transitions from isDisconnected to isPartOf can be described.


2021 ◽  
Vol 126 (23) ◽  
Author(s):  
Ye-Yuan Zhang ◽  
Hui Xie ◽  
Ling-Zhi Liu ◽  
Hai-Jun Jin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document