Hydrogen adsorption on c-ZrO2(111), t-ZrO2(101), and m-ZrO2(111) surfaces and their oxygen-vacancy defect for hydrogen sensing and storage: A first-principles investigation

2021 ◽  
pp. 130243
Author(s):  
Monrada Petchmark ◽  
Vithaya Ruangpornvisuti
Author(s):  
Javaria Batool ◽  
Syed Muhammad Alay-e-Abbas ◽  
Gustav Johansson ◽  
Waqas Zulfiqar ◽  
Muhammad Arsam Danish ◽  
...  

The thermodynamic, structural, magnetic and electronic properties of pristine and intrinsic vacancy defect containing topological Dirac semimetal Ba3SnO are studied using first-principles density functional theory calculations. The thermodynamic stability of...


2016 ◽  
Vol 13 (5) ◽  
pp. 3083-3088
Author(s):  
Shu-Yuan Yu ◽  
Yanqiang Zhang ◽  
Cheng-Gen Zhang ◽  
Yaru Li ◽  
Jingke Hou

2018 ◽  
Vol 69 (6) ◽  
pp. 1468-1472
Author(s):  
Radu Mirea ◽  
Mihai Iordoc ◽  
Gabriela Oprina ◽  
Gimi Rimbu

The paper aims to present the investigation of H2 adsorption capacity in metal doped nanostructured materials, by using two methods. Carbonic materials are considered to be one of the most promising materials to be used for hydrogen adsorption and storage. They have different applications and one of the most important is considered to be fuel cells technology. By using metals for doping these materials, the adsorption capacity increases, thus approaching the target of 6.5% weight ratio of H2 adsorbed in a substrate. Within these investigations multi-wall nanotubes and poly-aniline have been used as substrates. The poly-aniline has been prepared and doped in laboratory while the nanotubes used in experiments have been purchased from the market and afterwards doped in laboratory. The doping procedure consists of a physical-chemical method which involves salts of the metal for doping and the use of ultrasounds in order to activate the substrate for doping. The adsorption capacity of the carbonic materials has been determined by using spill over phenomena in a PCT Pro-User apparatus, provided by SETARAM and also by cyclic voltametry, by using VoltaLab-40 apparatus. In order to investigate the adsorption capacity of the nanostructured carbonic materials, the experiments have been carried out at different pressures. Both substrates have been characterized in order to determine their porosity, BET surface and structure. The collected data have been processed by using the PCT Pro-User apparatus�s software. The results have been compared with the available data from literature and a good consistency was found.


Sign in / Sign up

Export Citation Format

Share Document