vacancy defect
Recently Published Documents


TOTAL DOCUMENTS

368
(FIVE YEARS 121)

H-INDEX

40
(FIVE YEARS 9)

2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Chang-Youn Moon ◽  
Kee-Suk Hong ◽  
Yong-Sung Kim

We investigate defect properties in hexagonal boron nitride (hBN) which is attracting much attention as a single photon emitter. Using first-principles calculations, we find that nitrogen-vacancy defect V N has a lower energy structure in C 1 h symmetry in 1− charge state than the previously known D 3 h symmetry structure. Noting that carbon has one more valence electron than boron species, our finding naturally points to the correspondence between V N and V N C B defects with one charge state difference between them, which is indeed confirmed by the similarity of atomic symmetries, density of states, and excitation energies. Since V N C B is considered as a promising candidate for the source of single photon emission, our study suggests V N as another important candidate worth attention, with its simpler form without the incorporation of foreign elements into the host material.


Author(s):  
Shumin Yan ◽  
Qingxiao Zhou ◽  
Weiwei Ju ◽  
Xiangyang Li

Author(s):  
Feier Ni ◽  
Kun Zhu ◽  
Liuxue Xu ◽  
Yang Liu ◽  
Hao Yan ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3451
Author(s):  
Liu Chu ◽  
Jiajia Shi ◽  
Eduardo Souza de Cursi

The identification of atomic vacancy defects in graphene is an important and challenging issue, which involves inhomogeneous spatial randomness and requires high experimental conditions. In this paper, the fingerprints of resonant frequency for atomic vacancy defect identification are provided, based on the database of massive samples. Every possible atomic vacancy defect in the graphene lattice is considered and computed by the finite element model in sequence. Based on the sample database, the histograms of resonant frequency are provided to compare the probability density distributions and interval ranges. Furthermore, the implicit relationship between the locations of the atomic vacancy defects and the resonant frequencies of graphene is established. The fingerprint patterns are depicted by mapping the locations of atomic vacancy defects to the resonant frequency magnitudes. The geometrical characteristics of computed fingerprints are discussed to explore the feasibility of atomic vacancy defects identification. The work in this paper provides meaningful supplementary information for non-destructive defect detection and identification in nanomaterials.


2021 ◽  
Author(s):  
Nattapol Ma ◽  
Ryo Ohtani ◽  
Hung M. Le ◽  
Ryuta Ishikawa ◽  
Satoshi Kawata ◽  
...  

Prussian blue analogues (PBAs), a class of microporous crystalline coordination frameworks, are long known for their diverse properties in porosity, magnetic, charge transport, catalysis, optics, and more. Versatile structural composition and the ability to control defect ordering through synthetic conditions offer opportunities to manipulate the functionality in the crystalline state. However, developments in Prussian blue analogues (PBAs) have primarily revolved around the ordered crystalline state, and the glassy state of PBAs has not yet been explored. Here we report the discovery of a disordered glassy state of the PBA via mechanically induced crystal–glass transformation. We found the preservation of metal–ligand–metal connectivity, confirming the short-range order and semiconductor behaviour, exhibiting an electronic conductivity value of 0.31 mS cm−1 at 50 ˚C. Mechanical-induced glass transformation also triggers changes in electronic states, where electroneutrality is compensated by introducing unconventional CN− vacancies. Partial disorders and ligand vacancies in recrystallized PBA give rise to an enhanced porosity, inaccessible in the crystalline parent. The present work also established a correlation between the mechanical stress required to initiate crystal–glass transformation and intrinsic mechanical properties, which are controlled by the vacancy/defect content, the presence of interstitial water, and the overall composition of PBAs.


Inorganics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 80
Author(s):  
Li Zhou ◽  
Huadong Zhu ◽  
Wen Zeng

Sulphide gas is an impurity that affects the quality of natural gas, which needs reasonable storage and transportation. In this work, we investigated the adsorption structure and electronic behavior of hydrogen sulfide (H2S), carbonyl sulfur (COS), and methyl mercaptan (CH3SH) on sulphide gas molecules on pure and vacant α-Fe2O3(001) surfaces by density functional theory with geometrical relaxations. The results show that H2S and CH3SH are mainly adsorbed in the form of molecules on the pure Fe2O3(001) surface. On the vacant α-Fe2O3(001) surface, they can be adsorbed on Fe atoms in molecular form and by dissociation. The absolute value of the adsorption energy of H2S and CH3SH on the vacancy defect α-Fe2O3 surface is larger, and the density of states show that the electron orbital hybridization is more significant, and the adsorption is stronger. The charge differential density and Mulliken charge population analysis show that the charge is rearranged and chemical bonds are formed. The affinity of H2S to the vacancy α-Fe2O3(001) surface is slightly higher than that of CH3SH, while COS molecules basically do not adsorb on the α-Fe2O3(001) surface, which may be related to the stable chemical properties of the molecules themselves.


2021 ◽  
Vol 42 ◽  
pp. 836-844
Author(s):  
Hao Pan ◽  
Nan Feng ◽  
Xing Xu ◽  
Weiwei Li ◽  
Qinghua Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document