Bio-separator and bio-synthesizer of metallic nanoparticles - A new vision in bioremediation

2022 ◽  
Vol 306 ◽  
pp. 130878
Author(s):  
Marcia Regina Salvadori ◽  
Rômulo Augusto Ando ◽  
Benedito Corrêa
2012 ◽  
Vol 43 (7) ◽  
pp. 35
Author(s):  
ALICIA AULT
Keyword(s):  

2012 ◽  
Vol 42 (12) ◽  
pp. 48
Author(s):  
ALICIA AULT
Keyword(s):  

2020 ◽  
Vol 92 (2) ◽  
pp. 20101
Author(s):  
Behnam Kheyraddini Mousavi ◽  
Morteza Rezaei Talarposhti ◽  
Farshid Karbassian ◽  
Arash Kheyraddini Mousavi

Metal-assisted chemical etching (MACE) is applied for fabrication of silicon nanowires (SiNWs). We have shown the effect of amorphous sheath of SiNWs by treating the nanowires with SF6 and the resulting reduction of absorption bandwidth, i.e. making SiNWs semi-transparent in near-infrared (IR). For the first time, by treating the fabricated SiNWs with copper containing HF∕H2O2∕H2O solution, we have generated crystalline nanowires with broader light absorption spectrum, up to λ = 1 μm. Both the absorption and photo-luminescence (PL) of the SiNWs are observed from visible to IR wavelengths. It is found that the SiNWs have PL at visible and near Infrared wavelengths, which may infer presence of mechanisms such as forbidden gap transitions other can involvement of plasmonic resonances. Non-radiative recombination of excitons is one of the reasons behind absorption of SiNWs. Also, on the dielectric metal interface, the absorption mechanism can be due to plasmonic dissipation or plasmon-assisted generation of excitons in the indirect band-gap material. Comparison between nanowires with and without metallic nanoparticles has revealed the effect of nanoparticles on absorption enhancement. The broader near IR absorption, paves the way for applications like hyperthermia of cancer while the optical transition in near IR also facilitates harvesting electromagnetic energy at a broad spectrum from visible to IR.


Author(s):  
Susan EVANS

This case study explores the strategic business opportunities, for Lane Crawford, an iconic luxury department store, to transition in a circular economy towards sustainability. A new experimentation framework was developed and conducted among cross departmental employees, during a Design Lab, with intention to co-create novel Circular Economy business concepts towards a new vision: the later was a reframe of the old system based on the principles of sustainability; to move beyond a linear operational model towards a circular economy that can contribute to a regenerative society. This work draws on both academic and professional experience and was conducted through professional practice. It was found that innovative co-created concepts, output from the Design Lab, can create radical change in a circular economy that is holistically beneficial and financially viable; looking forward to extract greater value a)Internal organization requires remodeling to transform towards a circular economy; b)Requirement for more horizonal teams across departments vs solely vertical; c)New language and relationships are required to be able to transition towards a circular economy; d)Some form of physical and virtual space requirements, for cross-disciplinary teams to come together to co-create; e)Ability to iterate, learn and evolve requires agency across the business


Sign in / Sign up

Export Citation Format

Share Document