Thermoelectric properties of medium-entropy PbSbTeSe alloy prepared by reactive spark plasma sintering

2022 ◽  
Vol 309 ◽  
pp. 131416
Author(s):  
Ekaterina Yaprintseva ◽  
Alexei Vasil'ev ◽  
Maxim Yaprintsev ◽  
Oleg Ivanov
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2993
Author(s):  
Dong-won Shin ◽  
Peyala Dharmaiah ◽  
Jun-Woo Song ◽  
Soon-Jik Hong

In this work, Bi0.5Sb1.5Te3 materials were produced by an economically viable and time efficient water atomization process. The powder samples were heat treated at different temperatures (673 K, 723 K, 743 K, 773 K, 803 K, and 823 K) followed by spark plasma sintering (SPS). It was found that the Te evaporated slightly at 723 K and 743 K and became dominated at 773 K, 803 K, and 823 K, which severely influences the thermoelectric properties. The electrical conductivity was significantly improved for over 803 K heat treated samples due to the remarkable improvement in hole concentration. The power factor values for the 803 K and 823 K samples were significantly larger at T > 350 K compared to other samples. Consequently, the peak ZT of 0.92 at 350 K was obtained for the 803 K sample, which could be useful in commercial thermoelectric power generation.


2015 ◽  
Vol 195 ◽  
pp. 45-49 ◽  
Author(s):  
Koya Arai ◽  
Asumi Sasaki ◽  
Yuto Kimori ◽  
Miharu Iida ◽  
Tomoyuki Nakamura ◽  
...  

2014 ◽  
Vol 2 (38) ◽  
pp. 15829-15835 ◽  
Author(s):  
Kriti Tyagi ◽  
Bhasker Gahtori ◽  
Sivaiah Bathula ◽  
A. K. Srivastava ◽  
A. K. Shukla ◽  
...  

Intrinsically ultra-low thermal conductivity and electrical transport in single-phase Cu2SbSe3 synthesized employing a solid state reaction and spark plasma sintering.


2016 ◽  
Vol 37 (1-4) ◽  
pp. 66-72 ◽  
Author(s):  
Xing Tan ◽  
Jin-Le Lan ◽  
Yao-Chun Liu ◽  
Guang-Kun Ren ◽  
Cheng-Cheng Zeng ◽  
...  

2016 ◽  
Vol 123 ◽  
pp. 100-104 ◽  
Author(s):  
Alizée Visconti ◽  
Guillaume Bernard-Granger ◽  
Christelle Navone ◽  
Jean Leforestier ◽  
Natalio Mingo

Sign in / Sign up

Export Citation Format

Share Document