bismuth antimony telluride
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 28)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
pp. 2378-2385
Author(s):  
Liangwei Fu ◽  
Kwansu Park ◽  
Sang-Il Kim ◽  
Bongju Kim ◽  
Hyun Yong Song ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2993
Author(s):  
Dong-won Shin ◽  
Peyala Dharmaiah ◽  
Jun-Woo Song ◽  
Soon-Jik Hong

In this work, Bi0.5Sb1.5Te3 materials were produced by an economically viable and time efficient water atomization process. The powder samples were heat treated at different temperatures (673 K, 723 K, 743 K, 773 K, 803 K, and 823 K) followed by spark plasma sintering (SPS). It was found that the Te evaporated slightly at 723 K and 743 K and became dominated at 773 K, 803 K, and 823 K, which severely influences the thermoelectric properties. The electrical conductivity was significantly improved for over 803 K heat treated samples due to the remarkable improvement in hole concentration. The power factor values for the 803 K and 823 K samples were significantly larger at T > 350 K compared to other samples. Consequently, the peak ZT of 0.92 at 350 K was obtained for the 803 K sample, which could be useful in commercial thermoelectric power generation.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2339
Author(s):  
Amit Tanwar ◽  
Swatchith Lal ◽  
Kafil M. Razeeb

Wearable sensors to monitor vital health are becoming increasingly popular both in our daily lives and in medical diagnostics. The human body being a huge source of thermal energy makes it interesting to harvest this energy to power such wearables. Thermoelectric devices are capable of converting the abundantly available body heat into useful electrical energy using the Seebeck effect. However, high thermal resistance between the skin and the device leads to low-temperature gradients (2–10 K), making it difficult to generate useful power by this device. This study focuses on the design optimization of the micro-thermoelectric generator for such low-temperature applications and investigates the role of structural geometries in enhancing the overall power output. Electroplated p-type bismuth antimony telluride (BiSbTe) and n-type copper telluride (CuTe) materials’ properties are used in this study. All the simulations and design optimizations were completed following microfabrication constraints along with realistic temperature gradient scenarios. A series of structural optimizations were performed including the thermoelectric pillar geometries, interconnect contact material layers and fill factor of the overall device. The optimized structural design of the micro-thermoelectric device footprint of 4.5 × 3.5 mm2, with 240 thermoelectric leg pairs, showcased a maximum power output of 0.796 mW and 3.18 mW when subjected to the low-temperature gradient of 5 K and 10 K, respectively. These output power values have high potential to pave the way of realizing future wearable devices.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1706
Author(s):  
Zacharias Viskadourakis ◽  
Argiri Drymiskianaki ◽  
Vassilis M. Papadakis ◽  
Ioanna Ioannou ◽  
Theodora Kyratsi ◽  
...  

In the current study, polymer-based composites, consisting of Acrylonitrile Butadiene Styrene (ABS) and Bismuth Antimony Telluride (BixSb2−xTe3), were produced using mechanical mixing and hot pressing. These composites were investigated regarding their electrical resistivity and Seebeck coefficient, with respect to Bi doping and BixSb2-xTe3 loading into the composite. Experimental results showed that their thermoelectric performance is comparable—or even superior, in some cases—to reported thermoelectric polymer composites that have been produced using other complex techniques. Consequently, mechanically mixed polymer-based thermoelectric materials could be an efficient method for low-cost and large-scale production of polymer composites for potential thermoelectric applications.


Author(s):  
Peng Zhao ◽  
Fengrong Yu ◽  
Binhao Wang ◽  
Haidong Zhao ◽  
Chen Chen ◽  
...  

Porous BiSbTe bulks with a unique microstructure featuring closely bonded quasi-equiaxed grains show excellent thermoelectric and mechanical properties.


2020 ◽  
Vol 21 (4) ◽  
pp. 628-634
Author(s):  
O. Kostyuk ◽  
B. Dzundza ◽  
M. Maksymuk ◽  
V. Bublik ◽  
L. Chernyak ◽  
...  

Bismuth antimony telluride is the most commonly used commercial thermoelectric material for power generation and refrigeration over the temperature range of 200–400 K. Improving the performance of these materials is a complected balance of optimizing thermoelectric properties. Decreasing the grain size of Bi0.5Sb1.5Te3 significantly reduces the thermal conductivity due to the scattering phonons on the grain boundaries. In this work, it is shown the advances of spark plasma sintering (SPS) for the preparation of nanocrystalline p-type thermoelectrics based on Bi0.5Sb1.5Te3 at different temperatures (240, 350, 400oC). The complex study of structural and thermoelectric properties of Bi0.5Sb1.5Te3 were presented. The high dimensionless thermoelectric figure of merit ZT ~ 1 or some more over 300–400 K temperature range for nanocrystalline p-type Bi0.5Sb1.5Te3 was obtained.


Sign in / Sign up

Export Citation Format

Share Document