The influence of high temperature on DV-2 jet engine Ni-based superalloy turbine blade degradation

2017 ◽  
Vol 4 (5) ◽  
pp. 5743-5748
Author(s):  
Juraj Belan ◽  
Lenka Kucharikova ◽  
Alan Vasko ◽  
Eva Tillova
Alloy Digest ◽  
1959 ◽  
Vol 8 (3) ◽  

Abstract HAYNES Alloy No. 36 is a cobalt-base alloy having excellent strength at temperatures up to 1800 deg. F. It is the cast modification of wrought HAYNES Alloy No. 25 and has been used successfully in jet engine blading and nozzle vanes. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance and corrosion resistance as well as heat treating, machining, and joining. Filing Code: Co-17. Producer or source: Haynes Stellite Company.


Alloy Digest ◽  
1965 ◽  
Vol 14 (11) ◽  

Abstract MAR-M Alloy 200 is a nickel-base alloy designed primarily as a cast turbine blade material which retains useful strength up to 1900 F. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance as well as heat treating and joining. Filing Code: Ni-107. Producer or source: Martin Metals Company.


Alloy Digest ◽  
1952 ◽  
Vol 1 (2) ◽  

Abstract Flylite ZRE-1 is a creep resistant magnesium-base alloy primarily designed for jet engine components and other high temperature applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Mg-2. Producer or source: Howard Foundry Company.


Alloy Digest ◽  
1967 ◽  
Vol 16 (9) ◽  

Abstract CM-R41 is a vacuum-melted, precipitation hardening nickel-base alloy possessing outstanding properties in the temperature range of 1200 F to 1800 F. It is recommended for jet engine and gas turbine components operating at high temperatures. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear strength as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ni-127. Producer or source: Cannon-Muskegon Corporation.


Alloy Digest ◽  
1973 ◽  
Vol 22 (9) ◽  

Abstract CARPENTER M-252 is an age-hardenable nickel-base alloy designed for highly stressed parts operating at temperatures up to 1600 F. Its prime application is for jet-engine and gas-turbine buckets. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-195. Producer or source: Carpenter.


Alloy Digest ◽  
1981 ◽  
Vol 30 (11) ◽  

Abstract METGLAS MBF-10A is a brazing foil in ductile, flexible metallic-glass form (a similar grade, MBF-10, is identical except that it has larger dimensional tolerances). This foil provides an alloy with high strength at both elevated and room temperatures. It can be used to join highly stressed stainless steels and heat-resisting alloy components. Major application is in fabricating high-temperature jet-engine parts. This datasheet provides information on composition, physical properties, microstructure, tensile properties. It also includes information on heat treating and joining. Filing Code: Ni-272. Producer or source: Allied Corporation.


Alloy Digest ◽  
1968 ◽  
Vol 17 (8) ◽  

Abstract CMN-155 is an austenitic iron-base alloy having high oxidation and heat resistance combined with good high temperature properties. It is recommended for jet engine and gas turbine components, high temperature fasteners, and rocket chambers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: SS-212. Producer or source: Cannon-Muskegon Corporation.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3315
Author(s):  
Liuxi Cai ◽  
Yao He ◽  
Shunsen Wang ◽  
Yun Li ◽  
Fang Li

Based on the establishment of the original and improved models of the turbine blade, a thermal–fluid–solid coupling method and a finite element method were employed to analyze the internal and external flow, temperature, and thermal stress of the turbine blade. The uneven temperature field, the thermal stress distribution characteristics of the composite cooling turbine blade under the service conditions, and the effect of the thickness of the thermal barrier coating (TBC) on the temperature and thermal stress distributions were obtained. The results show that the method proposed in this paper can better predict the ablation and thermal stress damage of turbine blades. The thermal stress of the blade is closely related to the temperature gradient and local geometric structure of the blade. The inlet area of the pressure side-platform of the blade, the large curvature region of the pressure tip of the blade, and the rounding between the blade body and the platform on the back of the blade are easily damaged by thermal stress. Cooling structure optimization and thicker TBC thickness can effectively reduce the high temperature and temperature gradient on the surface and inside of the turbine blade, thereby reducing the local high thermal stress.


Sign in / Sign up

Export Citation Format

Share Document