Influence of preliminary heat treatment and ball milling of copper powder on cold spray process

2020 ◽  
Vol 25 ◽  
pp. 360-362
Author(s):  
S.V. Klinkov ◽  
V.F. Kosarev ◽  
V.S. Shikalov ◽  
T.M. Vidyuk ◽  
A.E. Chesnokov ◽  
...  
2021 ◽  
Vol 313 ◽  
pp. 127-135
Author(s):  
S.V. Klinkov ◽  
V.F. Kosarev ◽  
A.E. Chesnokov ◽  
A.V. Smirnov ◽  
V.S. Shikalov

This paper presents the results of a study of the effect of preliminary heat treatment and ball milling of aluminum powder on the cold spraying process and the properties of the obtained coatings (porosity and microhardness). The ball milling of aluminum powder leads to an increase in specific surface area, a decrease in apparent density and a decrease in the value of the crystallite size, which indicates a decrease in grain size. It is shown that coatings deposited from ball milled powders have slightly higher coatings hardness averagely. The profilometry of aluminum coatings obtained under the same conditions from the initial and processed powders did not reveal significant changes in the form of coatings and their typical dimensions (width, thickness), which indicates the absence of significant changes in the deposition coefficient of the initial and processed aluminum powders. Ball milled powders on average correspond to slightly higher hardnesses of coatings.


2016 ◽  
Vol 344 (4-5) ◽  
pp. 211-224 ◽  
Author(s):  
Paul Profizi ◽  
Alain Combescure ◽  
Kahuziro Ogawa

2014 ◽  
Vol 30 (6) ◽  
pp. 443-450 ◽  
Author(s):  
S. Yin ◽  
X. Suo ◽  
H. Liao ◽  
Z. Guo ◽  
X. Wang

2009 ◽  
Vol 50 (6) ◽  
pp. 1482-1488 ◽  
Author(s):  
Masahiro Fukumoto ◽  
Hiroki Terada ◽  
Masahiro Mashiko ◽  
Kazunori Sato ◽  
Motohiro Yamada ◽  
...  

2012 ◽  
Vol 206 (16) ◽  
pp. 3488-3494 ◽  
Author(s):  
Seungchan Cho ◽  
Kenta Takagi ◽  
Hansang Kwon ◽  
Dowon Seo ◽  
Kazuhiro Ogawa ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1633
Author(s):  
Zhiyi Zhang ◽  
Xiaoguang Sun ◽  
Shiming Huang ◽  
Xiaohui Han ◽  
Ping Zhu ◽  
...  

Aluminum alloy components of high-speed trains have a great risk of being corroded by various corrosive medium due to extremely complex atmospheric environments. This will bring out huge losses and reduce the safety and stability of trains. In order to solve the problem, cold spray process was used for repairing the damage of the aluminum alloy components with Al-based powders. Microstructure, mechanical properties and corrosion behavior were studied. The results indicated that there were very few pores and cracks in the repaired areas after repairing. The average microhardness of the repaired areas was 54.5 HV ± 3.4 HV, and the tensile strength of the repaired samples was 160.4 MPa. After neutral salt spray tests for 1000 h, the rate of mass loss of the samples repaired by cold spray was lower than that of 6A01 aluminum alloy. The electrochemical test results showed that the repaired areas had a higher open circuit potential than 6A01 aluminum alloy. As a result, the repaired areas such as the anode protected its nearby substrate. The samples repaired by cold spray exhibited better corrosion than 6A01 aluminum alloy. Cold spray process and Al-based powders are applicable for repairing the aluminum alloy components of high-speed trains.


2015 ◽  
pp. 403-429 ◽  
Author(s):  
D. Goldbaum ◽  
D. Poirier ◽  
E. Irissou ◽  
J. -G. Legoux ◽  
C. Moreau

Sign in / Sign up

Export Citation Format

Share Document