Mechanochemical synthesis of highly dispersed molybdenum from magnesium molybdate

2020 ◽  
Vol 31 ◽  
pp. 526-528
Author(s):  
M.P. Andreichikova ◽  
T.A. Udalova
2017 ◽  
Vol 90 (7) ◽  
pp. 1068-1074
Author(s):  
M. A. Lapshin ◽  
R. N. Rumyantsev ◽  
A. A. Ilyin ◽  
A. P. Ilyin ◽  
A. V. Volkova

2012 ◽  
Vol 4 (3) ◽  
pp. 179-185 ◽  
Author(s):  
O. A. Knyazheva ◽  
O. N. Baklanova ◽  
A. V. Lavrenov ◽  
E. A. Buluchevskii ◽  
T. I. Gulyaeva ◽  
...  

2020 ◽  
Vol 10 (16) ◽  
pp. 5525-5534 ◽  
Author(s):  
Jialiang Gu ◽  
Bingjun Zhu ◽  
Rudi Duan ◽  
Yan Chen ◽  
Shaoxin Wang ◽  
...  

MnOx–FeOx-Loaded silicalite-1 catalysts exhibit high NOx conversion at low temperatures.


Author(s):  
Yaru Li ◽  
Yu-Quan Zhu ◽  
Weili Xin ◽  
Song Hong ◽  
Xiaoying Zhao ◽  
...  

Rationally designing low-content and high-efficiency noble metal nanodots offers opportunities to enhance electrocatalytic performances for water splitting. However, the preparation of highly dispersed nanodots electrocatalysts remains a challenge. Herein, we...


2020 ◽  
Author(s):  
Theodosios Famprikis ◽  
O. Ulas Kudu ◽  
James Dawson ◽  
Pieremanuele Canepa ◽  
François Fauth ◽  
...  

<div> <p>Fast-ion conductors are critical to the development of solid-state batteries. The effects of mechanochemical synthesis that lead to increased ionic conductivity in an archetypical sodium-ion conductor Na<sub>3</sub>PS<sub>4</sub> are not fully understood. We present here a comprehensive analysis based on diffraction (Bragg, pair distribution function), spectroscopy (impedance, Raman, NMR, INS) and <i>ab-initio</i> simulations aimed at elucidating the synthesis-property relationships in Na<sub>3</sub>PS<sub>4</sub>. We consolidate previously reported interpretations about the local structure of ball-milled samples, underlining the sodium disorder and showing that a local tetragonal framework more accurately describes the structure than the originally proposed cubic one. Through variable-pressure impedance spectroscopy measurements, we report for the first time the activation volume for Na<sup>+</sup> migration in Na<sub>3</sub>PS<sub>4</sub>, which is ~30% higher for the ball-milled samples. Moreover, we show that the effect of ball-milling on increasing the ionic conductivity of Na<sub>3</sub>PS<sub>4</sub> to ~10<sup>-4</sup> S/cm can be reproduced by applying external pressure on a sample from conventional high temperature ceramic synthesis. We conclude that the key effects of mechanochemical synthesis on the properties of solid electrolytes can be analyzed and understood in terms of pressure, strain and activation volume.</p> </div>


Sign in / Sign up

Export Citation Format

Share Document