Influence of local post-weld heat treatment and its thermal analysis on thick wall carbon steel pipe

Author(s):  
G. Rajamurugan ◽  
S Suresh ◽  
Prabu Krishnasamy
2018 ◽  
Vol 25 (2) ◽  
pp. 304-312 ◽  
Author(s):  
Jeong-Hun An ◽  
Jihoon Lee ◽  
Yong-Sang Kim ◽  
Woo-Cheol Kim ◽  
Jung-Gu Kim

2013 ◽  
Vol 650 ◽  
pp. 612-615
Author(s):  
Prachya Peasura ◽  
Lersak Sumarn

The research was study the effect of post weld heat treatment parameters on microstructure and hardness in heat affected zone. The specimen was carbon steel AISI 1050 which thickness of 6 mm. The experiments with full factorial design. The factors used in this study were post weld heat treatment(PWHT) temperature of 500, 550, 600, 650 and post weld heat treatment time of 10 and 15 hour. The welded specimens were tested by tensile strength testing and hardness testing according to ASTM code. The result showed that both of post welds heat treatment temperature and post weld heat treatment time had interaction on hardness at 95% confidential (P value < 0.05). A factor affecting the hardness was the most PWHT temperature 550 ๐C and PWHT time 10 hr. of 279 HV. Microstructure can be concluded that low PWHT temperature and time effect on temper martensite with a coarse grain and martensite scattered throughout. Martensite was a smaller and greater fine grain, the ferrite and the volume decrease due to a higher temperature.This research can be used as data in the following appropriate PWHT parameters to carbon steel weld.


2019 ◽  
Vol 44 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Isiaka Oluwole Oladele ◽  
Davies Babatunde Alonge ◽  
Timothy Olakunle Betiku ◽  
Emmanuel Ohiomomo Igbafen ◽  
Benjamin Omotayo Adewuyi

The effect of Post Weld Heat Treatment (PWHT) on the microstructure, mechanical and corrosion properties of low carbon steel have been investigated. The welding process was conducted on butt joint using Manual Metal Arc Welding (MMAW) techniques at a welding voltage of 23 V and welding current of 110 A with the use of E6013 and 3.2 mm diameter as filler material. Heat treatment through full annealing was carried out on the welded low carbon steel. The mechanical properties (hardness, impact toughness and tensile properties) of the AW and PWHT samples were determined. The microstructure of the AW and PWHT samples was characterized by means of an optical microscopy. Corrosion behavior of the sample was studied in3.5 wt.% NaCl environment using potentiodynamic polarization method. The results showed that the AW samples has good combination of mechanical and corrosion properties. The microstructure revealed fine grains of pearlite randomly dispersed in the ferrite for the AW base metal (BM) sample while agglomerated and fine particle of epsilon carbide or cementite randomly dispersed on the ferritic phase of the heat affected zone (HAZ) and weld metal (WM), of the AW, respectively. The PWHT samples shows that the annealing process allow diffusion and growth of the fine grains into partial coarse grains of ferrite and pearlite which did not encourage improvement of the properties. Therefore, it was concluded that the welding parameters put in place during welding of the low carbon steel are optimum for quality weld.


2010 ◽  
Vol 659 ◽  
pp. 61-66
Author(s):  
Attila Magasdi ◽  
János Ginsztler ◽  
János Dobránszky

The high-carbon steel strips are one of the most widely used base materials of bandsaw blade manufacturing. These materials have sufficient strength and ductility to cope with the high fatigue load of the bandsaw blades. These endless strips are produced by welding, and therefore the weld and the heat affected zone have different mechanical properties, like tensile strength and fatigue resistance, than the base material. These properties of the weld can be influenced by preheat and post weld heat treatment. Regarding to the latest industrial requirements, the application of laserbeam welding was examined to produce higher standard bandsaw blade. The laserbeam welded joints has lower heat input and narrower heat affected zone compared to metal inert gas (MIG) welding, which is currently used in bandsaw blade manufacturing. To assure the proper mechanical properties and sufficient resistance to fatigue, an examination was carried out to determine the effect of preheat temperature and post weld heat treatment time on the mechanical properties and fatigue behaviour of the laserbeam welded joint.


Sign in / Sign up

Export Citation Format

Share Document