Waste combustion and lime induced calcite precipitation for problematic soils stabilization; an applied review

Author(s):  
Kennedy C. Onyelowe ◽  
Ifeanyichukwu C. Onuoha ◽  
Michael Onyia
Author(s):  
L. L. Sutter ◽  
G. R. Dewey ◽  
J. F. Sandell

Municipal waste combustion typically involves both energy recovery as well as volume reduction of municipal solid waste prior to landfilling. However, due to environmental concerns, municipal waste combustion (MWC) has not been a widely accepted practice. A primary concern is the leaching behavior of MWC ash when it is stored in a landfill. The ash consists of a finely divided fly ash fraction (10% by volume) and a coarser bottom ash (90% by volume). Typically, MWC fly ash fails tests used to evaluate leaching behavior due to high amounts of soluble lead and cadmium species. The focus of this study was to identify specific lead bearing phases in MWC fly ash. Detailed information regarding lead speciation is necessary to completely understand the leaching behavior of MWC ash.


2020 ◽  
Vol 57 (6) ◽  
pp. 189-196
Author(s):  
Kazuaki HIOKI ◽  
Kenta HATTORI ◽  
Satoshi NAKAMURA

2018 ◽  
Vol 17 (8) ◽  
pp. 1855-1861
Author(s):  
Nicolae Taranu ◽  
Monther Abdelhadi ◽  
Ancuta Rotaru ◽  
Maria Gavrilescu

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 268
Author(s):  
Jitong Zhao ◽  
Huawei Tong ◽  
Yi Shan ◽  
Jie Yuan ◽  
Qiuwang Peng ◽  
...  

Microbial-induced calcite precipitation (MICP) has been a promising method to improve geotechnical engineering properties through the precipitation of calcium carbonate (CaCO3) on the contact and surface of soil particles in recent years. In the present experiment, water absorption and unconfined compressive strength (UCS) tests were carried out to investigate the effects of three different fiber types (glass fiber, polyester fiber, and hemp fiber) on the physical and mechanical properties of MICP-treated calcareous sand. The fibers used were at 0%, 0.10%, 0.15%, 0.20%, 0.25%, 0.30%, 0.35%, and 0.40% relative to the weight of the sand. The results showed that the failure strain and ductility of the samples could be improved by adding fibers. Compared to biocemented sand (BS), the water absorption of these three fiber-reinforced biocemented sands were, respectively, decreased by 11.60%, 21.18%, and 7.29%. UCS was, respectively, increased by 24.20%, 60.76%, and 6.40%. Polyester fiber produced the best effect, followed by glass fiber and hemp fiber. The optimum contents of glass fiber and polyester fiber were 0.20% and 0.25%, respectively. The optimum content of hemp fiber was within the range of 0.20–0.25%. Light-emitting diode (LED) microscope and scanning electron microscope (SEM) images lead to the conclusion that only a little calcite precipitation had occurred around the hemp fiber, leading to a poor bonding effect compared to the glass and polyester fibers. It was therefore suggested that polyester fiber should be used to improve the properties of biocemented sand.


2000 ◽  
Vol 18 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Francesca Paoletti ◽  
Helmut Seifert ◽  
Jürgen Vehlow ◽  
Piero Sirini
Keyword(s):  

Author(s):  
Anders Palmén ◽  
Graham Price ◽  
Morgan Axelsson ◽  
Stefan Larsson

Sign in / Sign up

Export Citation Format

Share Document