COMPRESSIVE STRENGTH ANALYSIS ON PROBLEMATIC SOILS STABILIZED WITH FLY ASH IN JORDAN

2018 ◽  
Vol 17 (8) ◽  
pp. 1855-1861
Author(s):  
Nicolae Taranu ◽  
Monther Abdelhadi ◽  
Ancuta Rotaru ◽  
Maria Gavrilescu
2019 ◽  
Vol 1424 ◽  
pp. 012052
Author(s):  
Mochammad Qomaruddin ◽  
Han Ay Lie ◽  
Arif Hidayat ◽  
Sudarno ◽  
Anik Kustirini

2020 ◽  
Vol 1 (4) ◽  
pp. 28-34
Author(s):  
Abbas J. Al-Taie

The engineering problems of problematic soils are mainly related to their mechanical, physical, and mineralogical properties. Extensive efforts have been directed to mitigate damages that may happen for structures constructed on, or in these soils' types. Both conventional materials (e.g. cement, lime, etc.), chemical and produced materials were blended, mixed, or added to soils to improve their geotechnical properties. In the last years, different additives from the wastes of industrial processes have been adopted in engineering researches to improve soils. This paper reviews different industrial wastes materials (e.g., fly ash, blast slag, rice husk ash) as soil stabilizers, where the use of them has economic and engineering benefits. The effect of these materials on physical properties, compaction characteristics, compressive strength, and bearing ratio of soils have been presented, studied, and discussed. The contents of these materials are widely varied from reference to reference and reach a maximum value of 50%. These materials cause reduction in Atterberg limits and swelling potential to different degrees. For some soils, MDD and OMC increase with the addition of these materials, and verse versa. Almost, these materials cause an improvement in soils' strength and CBR. However, some wastes reveal more efficiently to improve the soil


INFO-TEKNIK ◽  
2020 ◽  
Vol 21 (2) ◽  
pp. 227
Author(s):  
Fauzi Rahman ◽  
Gawit Hidayat ◽  
Novita Bertiani

According to the Badan Pusat Statistik data in 2018, the total area of oil palm plantations in Indonesia currently reaches around 12.3 million hectares. Solid waste is the most waste, which is around 35-40% of the total Fresh Fruit Bunches (FFB) which is processed in the form of empty fruit bunches, fiber, fruit shells, and burnt ash. PT. Hasnur Citra Terpadu in Rantau, Tapin Regency, South Kalimantan is one of the Palm Oil Mill which in the combustion process of a boiler engine using oil palm shells and fibers is burned simultaneously. The result of the combustion process produces waste in the form of boiler crust ash which is fine textured (fly ash) and coarse textured (bottom ash). This study uses fly ash as a cement substitution for concrete mixtures. The making of mortar specimens was varied with fly ash with a percentage of 0%, 10%, 15%, 20% and 25% which will be tested for compressive strength at the age of 3 days, 7 days, 14 days, 21 days, and 28 days. Then the making of concrete specimens is planned with a quality of 25 MPa and the concrete compressive strength is tested at the age of 3 days, 7 days, 14 days, 28 days and 56 days and the split tensile strength test of the concrete at 28 days. Based on the results of the mortar compressive strength analysis, the optimum mixture of fly ash is 10% which is used for making concrete. The average compressive strength of normal concrete at 28 days is 26.33 MPa and the compressive strength of concrete with 10% fly ash (optimum concrete) is 26.14 MPa exceeding the design compressive strength of 25 MPa. Based on the results of the split tensile strength test of concrete at the age of 28 days, it was obtained 3,914 MPa for normal concrete and 3,466 MPa for optimum concrete.


2020 ◽  
Vol 6 (5) ◽  
pp. 1007-1016 ◽  
Author(s):  
Zahraa Fakhri Jawad ◽  
Rusul Jaber Ghayyib ◽  
Awham Jumah Salman

Cement production uses large quantities of natural resources and contributes to the release of CO2. In order to treat the environmental effects related to cement manufacturing, there is a need to improve alternative binders to make concrete. Accordingly, extensive study is ongoing into the utilization of cement replacements, using many waste materials and industrial. This paper introduces the results of experimental investigations upon the mortar study with the partial cement replacement. Fly ash, silica fume and glass powder were used as a partial replacement, and cement was replaced by 0%, 1%, 1.5%, 3% and 5% of each replacement by the weight. Compressive strength test was conducted upon specimens at the age of 7 and 28 days. Microstructural characteristic of the modified mortar was done through the scanning electron microscope (SEM) vision, and X-ray diffraction (XRD) analysis was carried out for mixes with different replacements. The tests results were compared with the control mix. The results manifested that all replacements present the development of strength; this improvement was less in the early ages and raised at the higher ages in comparison with the control specimens. Microstructural analysis showed the formation of hydration compounds in mortar paste for each replacement. This study concluded that the strength significantly improved by adding 5% of silica fume compared with fly ash and glass powder.


2018 ◽  
Vol 17 (9) ◽  
pp. 2023-2030
Author(s):  
Arnon Chaipanich ◽  
Chalermphan Narattha ◽  
Watcharapong Wongkeo ◽  
Pailyn Thongsanitgarn

Author(s):  
A. Z. Mohd Ali ◽  
◽  
N. A. Jalaluddin ◽  
N. Zulkiflee ◽  
◽  
...  

The production of ordinary Portland cement (OPC) consumes considerable amount of natural resources, energy and at the same time contribute in high emission of CO2 to the atmosphere. A new material replacing cement as binder called geopolymer is alkali-activated concrete which are made from fly ash, sodium silicate and sodium hydroxide (NaOH). The alkaline solution mixed with fly ash producing alternative binder to OPC binder in concrete named geopolymer paste. In the process, NaOH was fully dissolved in water and cooled to room temperature. This study aims to eliminate this process by using NaOH in solid form together with fly ash before sodium silicate liquid and water poured into the mixture. The amount of NaOH solids were based on 10M concentration. The workability test is in accordance to ASTM C230. Fifty cubic mm of the geopolymer paste were prepared which consists of fly ash to alkaline solution ratio of 1: 0.5 and the curing regime of 80℃ for 24 hours with 100% humidity were implemented. From laboratory test, the workability of dry method geopolymer paste were decreased. The compressive strength of the dry mix of NaOH showed 55% and the workability has dropped to 58.4%, it showed strength reduction compared to the wet mix method.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2694 ◽  
Author(s):  
Shansuo Zheng ◽  
Lihua Niu ◽  
Pei Pei ◽  
Jinqi Dong

In order to evaluate the deterioration regularity for the mechanical properties of brick masonry due to acid rain corrosion, a series of mechanical property tests for mortars, bricks, shear prisms, and compressive prisms after acid rain corrosion were conducted. The apparent morphology and the compressive strength of the masonry materials (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), the shear behavior of the masonry, and the compression behavior of the masonry were analyzed. The resistance of acid rain corrosion for the cement-lime mortar prisms was the worst, and the incorporation of fly ash into the cement mortar did not improve the acid rain corrosion resistance. The effect of the acid rain corrosion damage on the mechanical properties for the brick was significant. With an increasing number of acid rain corrosion cycles, the compressive strength of the mortar prisms, and the shear and compressive strengths of the brick masonry first increased and then decreased. The peak stress first increased and then decreased whereas the peak strain gradually increased. The slope of the stress-strain curve for the compression prisms gradually decreased. Furthermore, a mathematical degradation model for the compressive strength of the masonry material (cement mortar, cement-lime mortar, cement-fly ash mortar, and brick), as well as the shear strength attenuation model and the compressive strength attenuation model of brick masonry after acid rain corrosion were proposed.


2013 ◽  
Vol 864-867 ◽  
pp. 1923-1928
Author(s):  
Yue Xu ◽  
Jian Xi Li ◽  
Li Li Kan

A new kind of high strength cementitious material is made from phosphogypsum (PG), active carbon and fly-ash. Through the orthogonal research, it was showed that the calcination temperature, retention time, dosage of active carbon and fly ash on the compressive strength of cementitious binder are the most important. The result also showed that, in the conditions of temperature 1200°C, time retention 30 min, dosage of active carbon 10%, dosage of fly ash 5%, the compressive strength of the cementitious material for 3d and 28d could reach to 46.35MPa and 92.70MPa, the content of sulfur trioxide was 11.60% accordingly. A lot of active mineral materials, such as dicalcium silicate, tricalcium silicate, tricalcium aluminate were formed in the calcination. The C-S-H gel, calcium hydroxide and ettringite were found in 3d and 28d hydrates. It is found that the lime saturation ratio and silica modulus need to be control between 0.40~0.65 and 4~8 in order to produce high strength cementitious material.


Sign in / Sign up

Export Citation Format

Share Document