Power electronic converter topologies for switched reluctance motor towards torque ripple analysis

Author(s):  
M. Deepak ◽  
G. Janaki ◽  
C. Bharatiraja
2005 ◽  
Vol 18 (3) ◽  
pp. 453-465 ◽  
Author(s):  
Zeljko Grbo ◽  
Slobodan Vukosavic ◽  
Emil Levi

Although apparently simpler, the SRM drives are nowadays more expensive than their conventional AC drive counterparts. This is to a great extent caused by the lack of a standardised power electronic converter for SRM drives, which would be available on the market as a single module. A number of attempts were therefore made in recent times to develop novel power electronic converter structures for SRM drives, based on the utilization of a three-phase voltage source inverter (VSI), which is readily available as a single module. This paper follows this line of thought and presents a novel power electronic converter topology for SRM drives, which is entirely based on utilization of standard inverter legs. One of its most important feature is that both magnetizing and demagnetizing voltage may reach the DC-bus voltage level while being contemporarily applied during the conduction overlap in the SRM adjacent phases. At the same time, the voltage stress across the power switches equals the DC-bus voltage. The topology is functional in all operating regimes of the drive. Principle of operation is explained in detail for a three-phase SRM drive and experimental results obtained with a 6/4 switched reluctance motor, are included. Four inverter legs are required in this case. Some considerations, justifying the proposed converter topology from the point of view of the cost, are included.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110451
Author(s):  
Shouyi Han ◽  
Kaikai Diao ◽  
Xiaodong Sun

Switched reluctance motor (SRM) provide a potential candidate for electric vehicle (EV) applications due to rigid structure, potentially low production cost, the absence of permanent magnets, excellent power-speed characteristics, and high reliability and robustness. This paper aims to review the current research on the design, winding topologies, converter topologies, and control methods of switched reluctance motors (SRMs). Torque ripple and vibration are the main drawbacks of SRMs, which constrain their application. To conquer these drawbacks, multi-phase SRMs (MSRMs), optimum structure, and control methods of SRMs have been utilized over the past decades. In this paper, MSRMs with multiple combinations of stator/rotor poles and winding arrangements are investigated. Different converter topologies are compared, and a full-bridge converter is suitable for SRMs used in EVs. Torque sharing function, direct torque control, and direct instantaneous torque control are the main control methods to reduce the torque ripple of SRMs, which have been comprehensively summarized.


Sign in / Sign up

Export Citation Format

Share Document