Evaluation of modulus of elasticity of date palm sandwich panels using ultrasonic wave velocity and experimental models

Measurement ◽  
2020 ◽  
Vol 149 ◽  
pp. 107016
Author(s):  
Maryam Haseli ◽  
Mohammad Layeghi ◽  
Hamid Zarea Hosseinabadi
Forests ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 569 ◽  
Author(s):  
Wassim Kharrat ◽  
Ahmed Koubaa ◽  
Mohamed Khlif ◽  
Chedly Bradai

Currently, ultrasonic measurement is a widely used nondestructive approach to determine wood elastic properties, including the dynamic modulus of elasticity (DMOE). DMOE is determined based on wood density and ultrasonic wave velocity measurement. The use of wood average density to estimate DMOE introduces significant imprecision: Density varies due to intra-tree and intra-ring differences and differing silvicultural treatments. To ensure accurate DMOE assessment, we developed a prototype device to measure ultrasonic wave velocity with the same resolution as that provided by the X-ray densitometer for measuring wood density. A nondestructive method based on X-ray densitometry and the developed prototype was applied to determine radial and intra-ring wood DMOE profiles. This method provides accurate information on wood mechanical properties and their sources of variation. High-order polynomials were used to model intra-ring wood density and DMOE profiles in black spruce and jack pine wood. The transition from earlywood to latewood was defined as the inflection point. High and highly significant correlations were obtained between predicted and measured wood density and DMOE. An examination of the correlations between wood radial growth, density, and DMOE revealed close correlations between density and DMOE in rings, earlywood, and latewood


Author(s):  
Jiazhen Gao ◽  
Mingtao Zhou ◽  
Wennian Xu ◽  
Daxiang Liu ◽  
Jian Shen ◽  
...  

Vegetation concrete is a typical artificial composite soil commonly used for ecological restoration on slopes. The strength and stability of vegetation concrete would be reduced when it is used in areas where freeze–thaw cycles occur frequently. For exploring the changes of structural properties of vegetation concrete under freeze–thaw cycles, an indoor simulation experiment of vegetation concrete samples containing 25 and 30% water content was carried out, so as to test the changes of specimen surface, volume, ultrasonic wave velocity, shearing strength, and microscopic structure. The microstructural parameters were analyzed quantitatively with Image-Pro Plus software. The experimental results indicated that as cycles of freeze–thaw grow, the macroscopic changes of samples included steadily rising surface crack rate, increasing first and then decreasing volume, greatly reducing ultrasonic wave velocity and gradually decreasing shear strength. The inner structure of samples slowly deteriorated from overall dense to dispersed with decreasing cement hydration crystals, pores resulting from dispersion and destruction of bulky grains, higher surface porosity, and smoother particles in microscopic aspect. When compared with samples containing 25% water content, the microstructure of the 30% water content sample was more affected by the freeze–thaw cycle, and its structural weakening effect was more obvious. Reduced cement hydration crystals, lower inter-particle bonding force, and increase in the number of large pores were the main causes of degradation of vegetation concrete structure. Electrical engineering students can refer to the analysis methods in this paper to evaluate the structural performance of any electrical engineering material.


2001 ◽  
Vol 67 (660) ◽  
pp. 1402-1408 ◽  
Author(s):  
Shihua TANG ◽  
Michiaki KOBAYASHI ◽  
Setsuo MIURA ◽  
Hiroryuki FUJIKI ◽  
Kazuya IWABUCHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document