Random convolutional neural network structure: An intelligent health monitoring scheme for diesel engines

Measurement ◽  
2021 ◽  
Vol 171 ◽  
pp. 108786
Author(s):  
Ruihan Wang ◽  
Hui Chen ◽  
Cong Guan
2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Hongbo Zhao

BACKGROUND: Convolution neural network is often superior to other similar algorithms in image classification. Convolution layer and sub-sampling layer have the function of extracting sample features, and the feature of sharing weights greatly reduces the training parameters of the network. OBJECTIVE: This paper describes the improved convolution neural network structure, including convolution layer, sub-sampling layer and full connection layer. This paper also introduces five kinds of diseases and normal eye images reflected by the blood filament of the eyeball “yan.mat” data set, convenient to use MATLAB software for calculation. METHODSL: In this paper, we improve the structure of the classical LeNet-5 convolutional neural network, and design a network structure with different convolution kernels, different sub-sampling methods and different classifiers, and use this structure to solve the problem of ocular bloodstream disease recognition. RESULTS: The experimental results show that the improved convolutional neural network structure is ideal for the recognition of eye blood silk data set, which shows that the convolution neural network has the characteristics of strong classification and strong robustness. The improved structure can classify the diseases reflected by eyeball bloodstain well.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lingfeng Wang

The TV show rating analysis and prediction system can collect and transmit information more quickly and quickly upload the information to the database. The convolutional neural network is a multilayer neural network structure that simulates the operating mechanism of biological vision systems. It is a neural network composed of multiple convolutional layers and downsampling layers sequentially connected. It can obtain useful feature descriptions from original data and is an effective method to extract features from data. At present, convolutional neural networks have become a research hotspot in speech recognition, image recognition and classification, natural language processing, and other fields and have been widely and successfully applied in these fields. Therefore, this paper introduces the convolutional neural network structure to predict the TV program rating data. First, it briefly introduces artificial neural networks and deep learning methods and focuses on the algorithm principles of convolutional neural networks and support vector machines. Then, we improve the convolutional neural network to fit the TV program rating data and finally apply the two prediction models to the TV program rating data prediction. We improve the convolutional neural network TV program rating prediction model and combine the advantages of the convolutional neural network to extract effective features and good classification and prediction capabilities to improve the prediction accuracy. Through simulation comparison, we verify the feasibility and effectiveness of the TV program rating prediction model given in this article.


Author(s):  
Chao Du ◽  
Chang Liu ◽  
P. Balamurugan ◽  
P. Selvaraj

Artificial intelligence (AI) in healthcare has recently been promising using deep neural networks. It is indeed even been in clinical trials more and more, with positive outcomes. Deep learning is the process of using algorithms to train a neural network model using huge quantities of data to learn how to execute a given task and then make an accurate classification or prediction. Apart from physical health monitoring, such deep learning models can be used for the mental health evaluation of individuals. This study thus designs a deep learning-based mental health monitoring scheme (DL-MHMS) for college students. This model uses the most efficient convolutional neural network (CNN) to classify the mental health status as positive, negative, and normal using the EEG signals collected from college students. The simulation analysis achieves the highest classification accuracy and F1 scores of 97.54% and 98.35%, less sleeping disorder rate of 21.19%, low depression level of 18.11%, reduced suicide attention level of 28.14%, increasing personality development ratio of 97.52%, enhance self-esteem ratio of 98.42%, compared to existing models.


Sign in / Sign up

Export Citation Format

Share Document