Seismic Signal Synthesis by Generative Adversarial Network with Gated Convolutional Neural Network Structure

Author(s):  
Yuanming Li ◽  
Bonhwa Ku ◽  
Gwantae Kim ◽  
Jae-Kwang Ahn ◽  
Hanseok Ko
2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Hongbo Zhao

BACKGROUND: Convolution neural network is often superior to other similar algorithms in image classification. Convolution layer and sub-sampling layer have the function of extracting sample features, and the feature of sharing weights greatly reduces the training parameters of the network. OBJECTIVE: This paper describes the improved convolution neural network structure, including convolution layer, sub-sampling layer and full connection layer. This paper also introduces five kinds of diseases and normal eye images reflected by the blood filament of the eyeball “yan.mat” data set, convenient to use MATLAB software for calculation. METHODSL: In this paper, we improve the structure of the classical LeNet-5 convolutional neural network, and design a network structure with different convolution kernels, different sub-sampling methods and different classifiers, and use this structure to solve the problem of ocular bloodstream disease recognition. RESULTS: The experimental results show that the improved convolutional neural network structure is ideal for the recognition of eye blood silk data set, which shows that the convolution neural network has the characteristics of strong classification and strong robustness. The improved structure can classify the diseases reflected by eyeball bloodstain well.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lingfeng Wang

The TV show rating analysis and prediction system can collect and transmit information more quickly and quickly upload the information to the database. The convolutional neural network is a multilayer neural network structure that simulates the operating mechanism of biological vision systems. It is a neural network composed of multiple convolutional layers and downsampling layers sequentially connected. It can obtain useful feature descriptions from original data and is an effective method to extract features from data. At present, convolutional neural networks have become a research hotspot in speech recognition, image recognition and classification, natural language processing, and other fields and have been widely and successfully applied in these fields. Therefore, this paper introduces the convolutional neural network structure to predict the TV program rating data. First, it briefly introduces artificial neural networks and deep learning methods and focuses on the algorithm principles of convolutional neural networks and support vector machines. Then, we improve the convolutional neural network to fit the TV program rating data and finally apply the two prediction models to the TV program rating data prediction. We improve the convolutional neural network TV program rating prediction model and combine the advantages of the convolutional neural network to extract effective features and good classification and prediction capabilities to improve the prediction accuracy. Through simulation comparison, we verify the feasibility and effectiveness of the TV program rating prediction model given in this article.


Neural Networks (ANN) has evolved through many stages in the last three decades with many researchers contributing in this challenging field. With the power of math complex problems can also be solved by ANNs. ANNs like Convolutional Neural Network (CNN), Deep Neural network, Generative Adversarial Network (GAN), Long Short Term Memory (LSTM) network, Recurrent Neural Network (RNN), Ordinary Differential Network etc., are playing promising roles in many MNCs and IT industries for their predictions and accuracy. In this paper, Convolutional Neural Network is used for prediction of Beep sounds in high noise levels. Based on Supervised Learning, the research is developed the best CNN architecture for Beep sound recognition in noisy situations. The proposed method gives better results with an accuracy of 96%. The prototype is tested with few architectures for the training and test data out of which a two layer CNN classifier predictions were the best.


2019 ◽  
Vol 11 (2) ◽  
pp. 135 ◽  
Author(s):  
Xiaoran Shi ◽  
Feng Zhou ◽  
Shuang Yang ◽  
Zijing Zhang ◽  
Tao Su

Aiming at the problem of the difficulty of high-resolution synthetic aperture radar (SAR) image acquisition and poor feature characterization ability of low-resolution SAR image, this paper proposes a method of an automatic target recognition method for SAR images based on a super-resolution generative adversarial network (SRGAN) and deep convolutional neural network (DCNN). First, the threshold segmentation is utilized to eliminate the SAR image background clutter and speckle noise and accurately extract target area of interest. Second, the low-resolution SAR image is enhanced through SRGAN to improve the visual resolution and the feature characterization ability of target in the SAR image. Third, the automatic classification and recognition for SAR image is realized by using DCNN with good generalization performance. Finally, the open data set, moving and stationary target acquisition and recognition, is utilized and good recognition results are obtained under standard operating condition and extended operating conditions, which verify the effectiveness, robustness, and good generalization performance of the proposed method.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xingyu Xie ◽  
Bin Lv

Convolutional Neural Network- (CNN-) based GAN models mainly suffer from problems such as data set limitation and rendering efficiency in the segmentation and rendering of painting art. In order to solve these problems, this paper uses the improved cycle generative adversarial network (CycleGAN) to render the current image style. This method replaces the deep residual network (ResNet) of the original network generator with a dense connected convolutional network (DenseNet) and uses the perceptual loss function for adversarial training. The painting art style rendering system built in this paper is based on perceptual adversarial network (PAN) for the improved CycleGAN that suppresses the limitation of the network model on paired samples. The proposed method also improves the quality of the image generated by the artistic style of painting and further improves the stability and speeds up the network convergence speed. Experiments were conducted on the painting art style rendering system based on the proposed model. Experimental results have shown that the image style rendering method based on the perceptual adversarial error to improve the CycleGAN + PAN model can achieve better results. The PSNR value of the generated image is increased by 6.27% on average, and the SSIM values are all increased by about 10%. Therefore, the improved CycleGAN + PAN image painting art style rendering method produces better painting art style images, which has strong application value.


Sign in / Sign up

Export Citation Format

Share Document