Measuring the direction of gravity acceleration

Measurement ◽  
2021 ◽  
pp. 109908
Author(s):  
Kamil Madáč ◽  
Andrej Madáč ◽  
Kamil Madáč ◽  
Peter Popovec
Keyword(s):  
2018 ◽  
Vol 931 (1) ◽  
pp. 2-7
Author(s):  
V.D. Jushkin ◽  
L.V. Zotov ◽  
O.A. Khrapenko

The results of repeated measurements of the acceleration of gravity by the Russian absolute ballistic field gravimeter GABL-M on points of oil and gas deposits in the permafrost over a five year period are presented. The changes of gravity acceleration by the absolute gravimeter and GRACE satellite were compared. The results of comparisons of differences gravity acceleration by ballistic gravimeter GABL-M and relative Canadian gravimeters CG5 were [i]shown. The errors in determination of parameters of the gravitational field ballistic gravimeter GABL-M and CG5 gravimeters group were presented. The method of measurement with the gravimeter GABL-M and the method of determining the vertical gradients relative CG5 gravity meters was described. The necessity of introducing corrections of hydrogeology is caused by influence of hydro geological factors on the gravitational field in the permafrost. They are comparable with the values of the field change in the result of gas pumping.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 845
Author(s):  
Dongheun Han ◽  
Chulwoo Lee ◽  
Hyeongyeop Kang

The neural-network-based human activity recognition (HAR) technique is being increasingly used for activity recognition in virtual reality (VR) users. The major issue of a such technique is the collection large-scale training datasets which are key for deriving a robust recognition model. However, collecting large-scale data is a costly and time-consuming process. Furthermore, increasing the number of activities to be classified will require a much larger number of training datasets. Since training the model with a sparse dataset can only provide limited features to recognition models, it can cause problems such as overfitting and suboptimal results. In this paper, we present a data augmentation technique named gravity control-based augmentation (GCDA) to alleviate the sparse data problem by generating new training data based on the existing data. The benefits of the symmetrical structure of the data are that it increased the number of data while preserving the properties of the data. The core concept of GCDA is two-fold: (1) decomposing the acceleration data obtained from the inertial measurement unit (IMU) into zero-gravity acceleration and gravitational acceleration, and augmenting them separately, and (2) exploiting gravity as a directional feature and controlling it to augment training datasets. Through the comparative evaluations, we validated that the application of GCDA to training datasets showed a larger improvement in classification accuracy (96.39%) compared to the typical data augmentation methods (92.29%) applied and those that did not apply the augmentation method (85.21%).


2016 ◽  
Vol 869 ◽  
pp. 637-642
Author(s):  
Rafael Cardoso Toledo ◽  
Chen Y. An ◽  
Irajá Newton Bandeira ◽  
Filipe Estevão de Freitas

Composition profiles of eutectic alloy Pb25.9Sn74.1 atomic % grown by the normal and inverted Bridgman methods are presented and the study of the solute alloy redistribution is made. The inverted vertical Bridgman method, where the solidification occurs from the top to the bottom of the melt under a destabilizing thermal gradient, allows the growth of crystals with buoyancy-driven convection different from that with the usual vertical Bridgman configuration. The scope of this work is to study the influence of the gravity acceleration in the convection process.


Metrologia ◽  
1982 ◽  
Vol 18 (4) ◽  
pp. 221-229 ◽  
Author(s):  
F Alasia ◽  
L Cannizzo ◽  
G Cerutti ◽  
I Marson

Author(s):  
Cole Woods ◽  
Vishesh Vikas

Abstract The balance of inverted pendulum on inclined surfaces is the precursor to their control in unstructured environments. Researchers have devised control algorithms with feedback from contact (encoders - placed at the pendulum joint) and non-contact (gyroscopes, tilt) sensors. We present feedback control of Inverted Pendulum Cart (IPC) on variable inclines using non-contact sensors and a modified error function. The system is in the state of equilibrium when it is not accelerating and not falling over (rotational equilibrium). This is achieved when the pendulum is aligned along the gravity vector. The control feedback is obtained from non-contact sensors comprising of a pair of accelerometers placed on the inverted pendulum and one on the cart. The proposed modified error function is composed of the dynamic (non-gravity) acceleration of the pendulum and the velocity of the cart. We prove that the system is in equilibrium when the modified error is zero. We present algorithm to calculate the dynamic acceleration and angle of the pendulum, and incline angle using accelerometer readings. Here, the cart velocity and acceleration are assumed to be proportional to the motor angular velocity and acceleration. Thereafter, we perform simulation using noisy sensors to illustrate the balance of IPC on surfaces with unknown inclination angles using PID feedback controller with saturated motor torque, including valley profile that resembles a downhill, flat and uphill combination. The successful control of the system using the proposed modified error function and accelerometer feedback argues for future design of controllers for unstructured and unknown environments using all-accelerometer feedback.


2018 ◽  
Vol 6 (3) ◽  
pp. 208-214 ◽  
Author(s):  
Mengqi Hou ◽  
Haixia Wang ◽  
Zechen Xiao ◽  
Guilin Zhang

2009 ◽  
Vol 16 (3) ◽  
pp. 399-407 ◽  
Author(s):  
S. P. Pudasaini ◽  
B. Domnik

Abstract. We present a complete expression for the total energy associated with a rapid frictional granular shear flow down an inclined surface. This expression reduces to the often used energy for a non-accelerating flow of an isotropic, ideal fluid in a horizontal channel, or to the energy for a vertically falling mass. We utilize thickness-averaged mass and momentum conservation laws written in a slope-defined coordinate system. Both the enhanced gravity and friction are taken into account in addition to the bulk motion and deformation. The total energy of the flow at a given spatial position and time is defined as the sum of four energy components: the kinetic energy, gravity, pressure and the friction energy. Total energy is conserved for stationary flow, but for non-stationary flow the non-conservative force induced by the free-surface gradient means that energy is not conserved. Simulations and experimental results are used to sketch the total energy of non-stationary flows. Comparison between the total energy and the sum of the kinetic and pressure energy shows that the contribution due to gravity acceleration and frictional resistance can be of the same order of magnitude, and that the geometric deformation plays an important role in the total energy budget of the cascading mass. Relative importance of the different constituents in the total energy expression is explored. We also introduce an extended Froude number that takes into account the apparent potential energy induced by gravity and pressure.


Sign in / Sign up

Export Citation Format

Share Document