A time-stepping method for multibody systems involving frictional impacts and phases with persistent contact

2022 ◽  
Vol 169 ◽  
pp. 104591
Author(s):  
P. Passas ◽  
S. Natsiavas
Author(s):  
Stefan Uhlar ◽  
Peter Betsch

The contribution at hand deals with the energy-consistent time integration of hybrid multibody systems. The coupling of both rigid and flexible components is facilitated by the introduction of so called coupling constraints, leading to a set of differential algebraic equations governing the motion of the hybrid system. For the modeling of rigid components we rely on the so called rotationless formulation which makes possible the design of mechanical time integrators. In this connection modeling techniques such as the coordinate augmentation, nonholonomic constraints, control issues and modeling of joint friction will be addressed. This leads to a unified approach for the modeling of rigid and flexible bodies, rendering a hybrid-energy-momentum-consistent time stepping scheme. The performance will be demonstrated with the example of a spatial nonholonomic manipulator.


Author(s):  
Friedrich Pfeiffer

The theory of non-smooth multibody dynamics with unilateral contacts is now well established, for example in terms of measure equations of motion added by complementarities or formulated with the help of differential inclusions. Most researchers today focus on numerical methods for solving these systems, because computing times especially for large systems are a problem. Time-stepping schemes for time-integration, pivoting or iterative algorithms for solving the complementarity problem and the Augmented Lagrangian approach are methods of increasing numerical efficiency for large systems. The paper describes new findings for unilateral multibody systems and discusses two large industrial examples, namely the dynamics of a roller coaster and the behavior of a drop tower featuring hydraulic components.


Sign in / Sign up

Export Citation Format

Share Document