The a subunit asymmetry dictates the two opposite rotation directions in the synthesis and hydrolysis of ATP by the mitochondrial ATP synthase

2015 ◽  
Vol 84 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Salvatore Nesci ◽  
Fabiana Trombetti ◽  
Vittoria Ventrella ◽  
Alessandra Pagliarani
2016 ◽  
Vol 113 (45) ◽  
pp. 12709-12714 ◽  
Author(s):  
Kutti R. Vinothkumar ◽  
Martin G. Montgomery ◽  
Sidong Liu ◽  
John E. Walker

The structure of the intact monomeric ATP synthase from the fungus, Pichia angusta, has been solved by electron cryo-microscopy. The structure provides insights into the mechanical coupling of the transmembrane proton motive force across mitochondrial membranes in the synthesis of ATP. This mechanism requires a strong and integral stator, consisting of the catalytic α3β3-domain, peripheral stalk, and, in the membrane domain, subunit a and associated supernumerary subunits, kept in contact with the rotor turning at speeds up to 350 Hz. The stator’s integrity is ensured by robust attachment of both the oligomycin sensitivity conferral protein (OSCP) to the catalytic domain and the membrane domain of subunit b to subunit a. The ATP8 subunit provides an additional brace between the peripheral stalk and subunit a. At the junction between the OSCP and the apparently stiff, elongated α-helical b-subunit and associated d- and h-subunits, an elbow or joint allows the stator to bend to accommodate lateral movements during the activity of the catalytic domain. The stator may also apply lateral force to help keep the static a-subunit and rotating c10-ring together. The interface between the c10-ring and the a-subunit contains the transmembrane pathway for protons, and their passage across the membrane generates the turning of the rotor. The pathway has two half-channels containing conserved polar residues provided by a bundle of four α-helices inclined at ∼30° to the plane of the membrane, similar to those described in other species. The structure provides more insights into the workings of this amazing machine.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Anna Zhou ◽  
Alexis Rohou ◽  
Daniel G Schep ◽  
John V Bason ◽  
Martin G Montgomery ◽  
...  

Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation-driven rotation in ATP synthases.


2015 ◽  
Vol 248 (2) ◽  
pp. 163-169 ◽  
Author(s):  
Salvatore Nesci ◽  
Fabiana Trombetti ◽  
Vittoria Ventrella ◽  
Alessandra Pagliarani
Keyword(s):  

1988 ◽  
Vol 66 (7) ◽  
pp. 677-682 ◽  
Author(s):  
M. Tuena de Gômez-Puyou ◽  
Orlando B. Martins ◽  
A. Gômez-Puyou

A brief summary of the factors that control synthesis and hydrolysis of ATP by the mitochondrial H+-ATP synthase is made. Particular emphasis is placed on the role of the natural ATPase inhibitor protein. It is clear from the existing data obtained with a number of agents that there is no correlation between variations of the rate of ATP hydrolysis and ATP synthesis as driven by respiration. The mechanism by which each condition differentially affects the two activities is not entirely known. For the case of the natural ATPase inhibitor protein, it appears that the protein controls the kinetics of the enzyme. This control seems essential for achieving maximal accumulation of ATP during electron transport in systems that contain relatively high concentrations of ATP.


2020 ◽  
Vol 401 (6-7) ◽  
pp. 835-853 ◽  
Author(s):  
Leticia Veloso Ribeiro Franco ◽  
Chen Hsien Su ◽  
Alexander Tzagoloff

AbstractThe respiratory pathway of mitochondria is composed of four electron transfer complexes and the ATP synthase. In this article, we review evidence from studies of Saccharomyces cerevisiae that both ATP synthase and cytochrome oxidase (COX) are assembled from independent modules that correspond to structurally and functionally identifiable components of each complex. Biogenesis of the respiratory chain requires a coordinate and balanced expression of gene products that become partner subunits of the same complex, but are encoded in the two physically separated genomes. Current evidence indicates that synthesis of two key mitochondrial encoded subunits of ATP synthase is regulated by the F1 module. Expression of COX1 that codes for a subunit of the COX catalytic core is also regulated by a mechanism that restricts synthesis of this subunit to the availability of a nuclear-encoded translational activator. The respiratory chain must maintain a fixed stoichiometry of the component enzyme complexes during cell growth. We propose that high-molecular-weight complexes composed of Cox6, a subunit of COX, and of the Atp9 subunit of ATP synthase play a key role in establishing the ratio of the two complexes during their assembly.


2015 ◽  
Author(s):  
Anna Zhou ◽  
Alexis Rohou ◽  
Daniel G Schep ◽  
John V Bason ◽  
Martin G Montgomery ◽  
...  

Adenosine triphosphate (ATP), the chemical energy currency of biology, is synthesized in eukaryotic cells primarily by the mitochondrial ATP synthase. ATP synthases operate by a rotary catalytic mechanism where proton translocation through the membrane-inserted FO region is coupled to ATP synthesis in the catalytic F1 region via rotation of a central rotor subcomplex. We report here single particle electron cryomicroscopy (cryo-EM) analysis of the bovine mitochondrial ATP synthase. Combining cryo-EM data with bioinformatic analysis allowed us to determine the fold of the a subunit, suggesting a proton translocation path through the FO region that involves both the a and b subunits. 3D classification of images revealed seven distinct states of the enzyme that show different modes of bending and twisting in the intact ATP synthase. Rotational fluctuations of the c8-ring within the FO region support a Brownian ratchet mechanism for proton-translocation driven rotation in ATP synthases.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Niklas Klusch ◽  
Bonnie J Murphy ◽  
Deryck J Mills ◽  
Özkan Yildiz ◽  
Werner Kühlbrandt

ATP synthases produce ATP by rotary catalysis, powered by the electrochemical proton gradient across the membrane. Understanding this fundamental process requires an atomic model of the proton pathway. We determined the structure of an intact mitochondrial ATP synthase dimer by electron cryo-microscopy at near-atomic resolution. Charged and polar residues of the a-subunit stator define two aqueous channels, each spanning one half of the membrane. Passing through a conserved membrane-intrinsic helix hairpin, the lumenal channel protonates an acidic glutamate in the c-ring rotor. Upon ring rotation, the protonated glutamate encounters the matrix channel and deprotonates. An arginine between the two channels prevents proton leakage. The steep potential gradient over the sub-nm inter-channel distance exerts a force on the deprotonated glutamate, resulting in net directional rotation.


Sign in / Sign up

Export Citation Format

Share Document