High-performance scalable architecture for modular multiplication using a new digit-serial computation

2016 ◽  
Vol 55 ◽  
pp. 169-178 ◽  
Author(s):  
Abdalhossein Rezai ◽  
Parviz Keshavarzi
2011 ◽  
Vol 20 (03) ◽  
pp. 375-400 ◽  
Author(s):  
INÉS DEL CAMPO ◽  
JAVIER ECHANOBE ◽  
KOLDO BASTERRETXEA ◽  
GUILLERMO BOSQUE

This paper presents a scalable architecture suitable for the implementation of high-speed fuzzy inference systems on reconfigurable hardware. The main features of the proposed architecture, based on the Takagi–Sugeno inference model, are scalability, high performance, and flexibility. A scalable fuzzy inference system (FIS) must be efficient and practical when applied to complex situations, such as multidimensional problems with a large number of membership functions and a large rule base. Several current application areas of fuzzy computation require such enhanced capabilities to deal with real-time problems (e.g., robotics, automotive control, etc.). Scalability and high performance of the proposed solution have been achieved by exploiting the inherent parallelism of the inference model, while flexibility has been obtained by applying hardware/software codesign techniques to reconfigurable hardware. Last generation reconfigurable technologies, particularly field programmable gate arrays (FPGAs), make it possible to implement the whole embedded FIS (e.g., processor core, memory blocks, peripherals, and specific hardware for fuzzy inference) on a single chip with the consequent savings in size, cost, and power consumption. As a prototyping example, we implemented a complex fuzzy controller for a vehicle semi-active suspension system composed of four three-input FIS on a single FPGA of the Xilinx's Virtex 5 device family.


Sign in / Sign up

Export Citation Format

Share Document