Low-Cost High-Performance VLSI Architecture for Montgomery Modular Multiplication

Author(s):  
Shiann-Rong Kuang ◽  
Kun-Yi Wu ◽  
Ren-Yao Lu
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Osamah Ibrahim Khalaf ◽  
Carlos Andrés Tavera Romero ◽  
A. Azhagu Jaisudhan Pazhani ◽  
G. Vinuja

This study implements the VLSI architecture for nonlinear-based picture scaling that is minimal in complexity and memory efficient. Image scaling is used to increase or decrease the size of an image in order to map the resolution of different devices, particularly cameras and printers. Larger memory and greater power are also necessary to produce high-resolution photographs. As a result, the goal of this project is to create a memory-efficient low-power image scaling methodology based on the effective weighted median interpolation methodology. Prefiltering is employed in linear interpolation scaling methods to improve the visual quality of the scaled image in noisy environments. By decreasing the blurring effect, the prefilter performs smoothing and sharpening processes to produce high-quality scaled images. Despite the fact that prefiltering requires more processing resources, the suggested solution scales via effective weighted median interpolation, which reduces noise intrinsically. As a result, a low-cost VLSI architecture can be created. The results of simulations reveal that the effective weighted median interpolation outperforms other existing approaches.


2011 ◽  
Vol 20 (03) ◽  
pp. 531-548 ◽  
Author(s):  
KOOROUSH MANOCHEHRI ◽  
BABAK SADEGHIYAN ◽  
SAADAT POURMOZAFARI

Modular calculations are widely used in many applications, especially in public key cryptography. Such operations are very time consuming, due to their long operands. To improve the performance of these calculations, many methods have been introduced. Montgomery modular multiplication is an example of such a solution to enhance the performance of modular multiplication and modular exponentiation. The radix-2 version of this method is simple and fast for hardware implementation, where multi-operand adders are required for its implementation. So far, Carry-Save-Adder (CSA) gives the best performance for multi-addition. In this paper, we propose a new recoding method for the Montgomery modular multiplier to enhance its performance. This is done through replacing CSA blocks with new blocks that have better performances than CSA in multi-addition calculations. With this replacement, we can theoretically have up to 40% reduction in area gates. In our experiments, we obtained 5.8% area reduction and 3% speed improvement in a hardware implementation. The idea behind our proposed method is the use of bitwise subtraction operator, where no carry propagation is needed. This recoding method of operands can also be used in many aspects of computer arithmetic, algorithms and computational hardware, such as multiplication, exponentiation and etc., in order to enhance their performances.


Sign in / Sign up

Export Citation Format

Share Document