Membrane fouling in a submerged membrane bioreactor (MBR) under sub-critical flux operation: Membrane foulant and gel layer characterization

2008 ◽  
Vol 325 (1) ◽  
pp. 238-244 ◽  
Author(s):  
Zhiwei Wang ◽  
Zhichao Wu ◽  
Xing Yin ◽  
Lumei Tian
2015 ◽  
Vol 11 (21) ◽  
pp. 137-155 ◽  
Author(s):  
Edson Baltazar Estrada-Arriaga ◽  
Petia Mijaylova Nacheva ◽  
Liliana García-Sánchez

The aim of this study was to examine the impact of different Mixed Liquor Volatile Suspended Solids (MLVSS) concentrations on membrane fouling,in a submerged Membrane Bioreactor (MBR) at short and longterm MBRoperation for waste water treatment. Three laboratory-scale in a submerged MBR system were operated under critical flux, subcritical flux,and an intermittent suction time and backwashing conditions. At short-term MBR operation with mixed liquors of 4,200 and 6,150 mg MLVSSL−1, the hydraulic resistance of membranes followed a same trajectory with averages of 5.0E+12m−1, whereas for 7,940 mg MLVSSL−1, a highresistance of up to 1.7E+13m−1was obtained. The result showed thathigh biomass concentrations decreased to permeability due to a bio-layer formed in the membrane surface and high Extracellular Polymeric Substance (EPS).


2003 ◽  
Vol 227 (1-2) ◽  
pp. 81-93 ◽  
Author(s):  
Pierre Le Clech ◽  
Bruce Jefferson ◽  
In Soung Chang ◽  
Simon J. Judd

2017 ◽  
Vol 76 (4) ◽  
pp. 963-975 ◽  
Author(s):  
Shamas Tabraiz ◽  
Sajjad Haydar ◽  
Paul Sallis ◽  
Sadia Nasreen ◽  
Qaisar Mahmood ◽  
...  

Intermittent backwashing and relaxation are mandatory in the membrane bioreactor (MBR) for its effective operation. The objective of the current study was to evaluate the effects of run-relaxation and run-backwash cycle time on fouling rates. Furthermore, comparison of the effects of backwashing and relaxation on the fouling behavior of membrane in high rate submerged MBR. The study was carried out on a laboratory scale MBR at high flux (30 L/m2·h), treating sewage. The MBR was operated at three relaxation operational scenarios by keeping the run time to relaxation time ratio constant. Similarly, the MBR was operated at three backwashing operational scenarios by keeping the run time to backwashing time ratio constant. The results revealed that the provision of relaxation or backwashing at small intervals prolonged the MBR operation by reducing fouling rates. The cake and pores fouling rates in backwashing scenarios were far less as compared to the relaxation scenarios, which proved backwashing a better option as compared to relaxation. The operation time of backwashing scenario (lowest cycle time) was 64.6% and 21.1% more as compared to continuous scenario and relaxation scenario (lowest cycle time), respectively. Increase in cycle time increased removal efficiencies insignificantly, in both scenarios of relaxation and backwashing.


Sign in / Sign up

Export Citation Format

Share Document