Polyamine-based thin-film composite nanofiltration membrane embedded with catalytic chemical additive for enhanced separation performance and acid stability

2022 ◽  
Vol 644 ◽  
pp. 120155
Author(s):  
Kayode Hassan Lasisi ◽  
Kaisong Zhang
RSC Advances ◽  
2020 ◽  
Vol 10 (27) ◽  
pp. 16168-16178
Author(s):  
Bo Lin ◽  
Huifen Tan ◽  
Wenchao Liu ◽  
Congjie Gao ◽  
Qiaoming Pan

Thin-film composite (TFC) nanofiltration (NF) membranes with zwitterionic striped surface were fabricated via the co-deposition and interfacial polymerization.


Desalination ◽  
2011 ◽  
Vol 279 (1-3) ◽  
pp. 201-209 ◽  
Author(s):  
Satinderpal Kaur ◽  
Rajendrakumar Barhate ◽  
Subramanian Sundarrajan ◽  
Takeshi Matsuura ◽  
Seeram Ramakrishna

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 592
Author(s):  
Yi-Li Lin ◽  
Nai-Yun Zheng ◽  
Yu-Shen Chen

Through interfacial polymerization (IP), a polyamide (PA) layer was synthesized on the top of a commercialized polysulfone substrate to form a thin-film composite (TFC) nanofiltration membrane. Graphene oxide (GO) was dosed during the IP process to modify the NF membrane, termed TFC-GO, to enhance oxidant resistance and membrane performance. TFC-GO exhibited increased surface hydrophilicity, water permeability, salt rejection, removal efficiency of pharmaceutical and personal care products (PPCPs), and H2O2 resistance compared with TFC. When H2O2 exposure was 0–96000 ppm-h, the surfaces of the TFC and TFC-GO membranes were damaged, and swelling was observed using scanning electron microscopy. However, the permeate flux of TFC-GO remained stable, with significantly higher NaCl, MgSO4, and PPCP rejection with increasing H2O2 exposure intensity than TFC, which exhibited a 3.5-fold flux increase with an approximate 50% decrease in salt and PPCP rejection. GO incorporated into a PA layer could react with oxidants to mitigate membrane surface damage and increase the negative charge on the membrane surface, resulting in the enhancement of the electrostatic repulsion of negatively charged PPCPs. This hypothesis was confirmed by the significant decrease in PPCP adsorption onto the surface of TFC-GO compared with TFC. Therefore, TFC-GO membranes exhibited superior water permeability, salt rejection, and PPCP rejection and satisfactory resistance to H2O2, indicating its great potential for practical applications.


2017 ◽  
Vol 407 ◽  
pp. 260-275 ◽  
Author(s):  
Hongbin Li ◽  
Wenying Shi ◽  
Qiyun Du ◽  
Rong Zhou ◽  
Haixia Zhang ◽  
...  

Membranes ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 137
Author(s):  
Hongyi Han ◽  
Ruobin Dai ◽  
Zhiwei Wang

Widespread applications of nanofiltration (NF) and reverse osmosis (RO)-based processes for water purification and desalination call for high-performance thin-film composite (TFC) membranes. In this work, a novel and facile modification method was proposed to fabricate high-performance thin-film composite nanofiltration membrane by introducing Ca2+ in the heat post-treatment. The introduction of Ca2+ induced in situ Ca2+-carboxyl intra-bridging, leading to the embedment of Ca2+ in the polyamide (PA) layer. This post modification enhanced the hydrophilicity and surface charge of NF membranes compared to the pristine membrane. More interestingly, the modified membrane had more nodules and exhibited rougher morphology. Such changes brought by the addition of Ca2+ enabled the significant increase of water permeability (increasing from 17.9 L·m−2·h−1·bar−1 to 29.8 L·m−2·h−1·bar−1) while maintaining a high selectivity (Na2SO4 rejection rate of 98.0%). Furthermore, the intra-bridging between calcium and carboxyl imparted the NF membranes with evident antifouling properties, exhibiting milder permeability decline of 4.2% (compared to 16.7% of NF-control) during filtration of sodium alginate solution. The results highlight the potential of using Ca2+-carboxyl intra-bridging post-treatment to fabricate high-performance TFC membranes for water purification and desalination.


Sign in / Sign up

Export Citation Format

Share Document