Molecular characterization and genetic diversity of Loa loa parasites responsible of a long-delayed filarial infection in an immigrant patient inhabited in Paris

2021 ◽  
pp. 105101
Author(s):  
Mohammad Akhoundi ◽  
Anthony Marteau ◽  
Frederic Mechaï ◽  
Stéphane Mantelet ◽  
Arezki Izri
2017 ◽  
Vol 48 ◽  
pp. 102-108
Author(s):  
Shahzad Shaukat ◽  
Mehar Angez ◽  
Tariq Mahmood ◽  
Muhammad Masroor Alam ◽  
Salmaan Sharif ◽  
...  

2017 ◽  
Vol 30 ◽  
pp. 48-57 ◽  
Author(s):  
Caijin Chen ◽  
Wenchuang He ◽  
Tondi Yacouba Nassirou ◽  
Athanase Nsabiyumva ◽  
Xilong Dong ◽  
...  

2020 ◽  
Author(s):  
Mansoor Kodori ◽  
Zohreh Ghalavand ◽  
Abbas Yadegar ◽  
Gita Eslami ◽  
Masoumeh Azimirad ◽  
...  

Abstract Background: Clostridioides difficile is the main cause of healthcare-associated diarrhea worldwide. It is proposed that certain C. difficile toxinotypes with distinct pathogenicity locus (PaLoc) variants are associated with disease severity and outcomes. Additionally, few studies have described the common C. difficile toxinotypes, and also little is known about the tcdC variants in Iranian isolates. We characterized the toxinotypes and the tcdC genotypes from a collection of Iranian clinical C. difficile tcdA+B+ isolates with known ribotypes (RTs).Methods: Fifty C. difficile isolates with known RTs and carrying the tcdA and tcdB toxin genes were analyzed. Toxinotyping was carried out based on a PCR-RFLP analysis of a 19.6 kb region encompassing the PaLoc. Genetic diversity of the tcdC gene was determined by the sequencing of the gene.Results: Of the 50 C. difficile isolates investigated, five distinct toxinotypes were recognized. Toxinotypes 0 (33/50, 66%) and V (11/50, 22%) were the most frequently found. C. difficile isolates of the toxinotype 0 mostly belonged to RT 001 (12/33, 36.4%), whereas toxinotype V consisted of RT 126 (9/11, 81.8%). The tcdC sequencing showed six variants (35/50, 70%); tcdC-sc3 (24%), tcdC-A (22%), tcdC-sc9 (18%), tcdC-B (2%), tcdC-sc14 (2%), and tcdC-sc15 (2%). The remaining isolates were wild-types (15/50, 30%) in the tcdC gene.Conclusions: The present study demonstrates that the majority of clinical tcdA+B+ isolates of C. difficile frequently harbor tcdC genetic variants. We also found that the RT 001/ toxinotype 0 and the RT 126/ toxinotype V are the most common types among Iranian isolates. Further studies are needed to investigate the putative association of various tcdC genotypes with CDI severity and its recurrence.


Author(s):  
S. P. Jeevan Kumar ◽  
C. Susmita ◽  
K. V. Sripathy ◽  
Dinesh K. Agarwal ◽  
Govind Pal ◽  
...  

Abstract Background The genetic base of soybean cultivars in India has been reported to be extremely narrow, due to repeated use of few selected and elite genotypes as parents in the breeding programmes. This ultimately led to the reduction of genetic variability among existing soybean cultivars and stagnation in crop yield. Thus in order to enhance production and productivity of soybean, broadening of genetic base and exploring untapped valuable genetic diversity has become quite indispensable. This could be successfully accomplished through molecular characterization of soybean genotypes using various DNA based markers. Hence, an attempt was made to study the molecular divergence and relatedness among 29 genotypes of soybean using SSR markers. Methods and results A total of 35 SSR primers were deployed to study the genetic divergence among 29 genotypes of soybean. Among them, 14 primer pairs were found to be polymorphic producing a total of 34 polymorphic alleles; and the allele number for each locus ranged from two to four with an average of 2.43 alleles per primer pair. Polymorphic information content (PIC) values of SSRs ranged from 0.064 to 0.689 with an average of 0.331. The dendrogram constructed based on dissimilarity indices clustered the 29 genotypes into two major groups and four sub-groups. Similarly, principal coordinate analysis grouped the genotypes into four major groups that exactly corresponded to the clustering of genotypes among four sub-groups of dendrogram. Besides, the study has reported eight unique and two rare alleles that could be potentially utilized for genetic purity analysis and cultivar identification in soybean. Conclusion In the present investigation, two major clusters were reported and grouping of large number of genotypes in each cluster indicated high degree of genetic resemblance and narrow genetic base among the genotypes used in the study. With respect to the primers used in the study, the values of PIC and other related parameters revealed that the selected SSR markers are moderately informative and could be potentially utilized for diversity analysis of soybean. The clustering pattern of dendrogram constructed based on SSR loci profile displayed good agreement with the cultivar’s pedigree information. High level of genetic similarity observed among the genotypes from the present study necessitates the inclusion of wild relatives, land races and traditional cultivars in future soybean breeding programmes to widen the crop gene pool. Thus, hybridization among diverse gene pool could result in more heterotic combinations ultimately enhancing genetic gain, crop yield and resistance to various stress factors.


2020 ◽  
Vol 43 (1) ◽  
pp. 109-121 ◽  
Author(s):  
Fawad Ali ◽  
Muhammad Azhar Nadeem ◽  
Ephrem Habyarimana ◽  
Abdurrahim Yılmaz ◽  
Muhammad Amjad Nawaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document