scholarly journals Molecular Characterization of Pathogenicity Locus (PaLoc) and tcdC Genetic Diversity Among tcdA+B+ Clostridioides Difficile Clinical Isolates in Tehran, Iran

2020 ◽  
Author(s):  
Mansoor Kodori ◽  
Zohreh Ghalavand ◽  
Abbas Yadegar ◽  
Gita Eslami ◽  
Masoumeh Azimirad ◽  
...  

Abstract Background: Clostridioides difficile is the main cause of healthcare-associated diarrhea worldwide. It is proposed that certain C. difficile toxinotypes with distinct pathogenicity locus (PaLoc) variants are associated with disease severity and outcomes. Additionally, few studies have described the common C. difficile toxinotypes, and also little is known about the tcdC variants in Iranian isolates. We characterized the toxinotypes and the tcdC genotypes from a collection of Iranian clinical C. difficile tcdA+B+ isolates with known ribotypes (RTs).Methods: Fifty C. difficile isolates with known RTs and carrying the tcdA and tcdB toxin genes were analyzed. Toxinotyping was carried out based on a PCR-RFLP analysis of a 19.6 kb region encompassing the PaLoc. Genetic diversity of the tcdC gene was determined by the sequencing of the gene.Results: Of the 50 C. difficile isolates investigated, five distinct toxinotypes were recognized. Toxinotypes 0 (33/50, 66%) and V (11/50, 22%) were the most frequently found. C. difficile isolates of the toxinotype 0 mostly belonged to RT 001 (12/33, 36.4%), whereas toxinotype V consisted of RT 126 (9/11, 81.8%). The tcdC sequencing showed six variants (35/50, 70%); tcdC-sc3 (24%), tcdC-A (22%), tcdC-sc9 (18%), tcdC-B (2%), tcdC-sc14 (2%), and tcdC-sc15 (2%). The remaining isolates were wild-types (15/50, 30%) in the tcdC gene.Conclusions: The present study demonstrates that the majority of clinical tcdA+B+ isolates of C. difficile frequently harbor tcdC genetic variants. We also found that the RT 001/ toxinotype 0 and the RT 126/ toxinotype V are the most common types among Iranian isolates. Further studies are needed to investigate the putative association of various tcdC genotypes with CDI severity and its recurrence.

Anaerobe ◽  
2020 ◽  
Vol 66 ◽  
pp. 102294
Author(s):  
Mansoor Kodori ◽  
Zohreh Ghalavand ◽  
Abbas Yadegar ◽  
Gita Eslami ◽  
Masoumeh Azimirad ◽  
...  

Author(s):  
Adriana Gibotti ◽  
Tânia L. Tanaka ◽  
Valéria R. Oliveira ◽  
Carla R. Taddei ◽  
Marina B. Martinez

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 89
Author(s):  
Jiayu Li ◽  
Fuxian Yang ◽  
Ruobing Liang ◽  
Sheng Guo ◽  
Yaqiong Guo ◽  
...  

Cryptosporidiumfelis is an important cause of feline and human cryptosporidiosis. However, the transmission of this pathogen between humans and cats remains controversial, partially due to a lack of genetic characterization of isolates from cats. The present study was conducted to examine the genetic diversity of C. felis in cats in China and to assess their potential zoonotic transmission. A newly developed subtyping tool based on a sequence analysis of the 60-kDa glycoprotein (gp60) gene was employed to identify the subtypes of 30 cat-derived C. felis isolates from Guangdong and Shanghai. Altogether, 20 C. felis isolates were successfully subtyped. The results of the sequence alignment showed a high genetic diversity, with 13 novel subtypes and 2 known subtypes of the XIXa subtype family being identified. The known subtypes were previously detected in humans, while some of the subtypes formed well-supported subclusters with human-derived subtypes from other countries in a phylogenetic analysis of the gp60 sequences. The results of this study confirmed the high genetic diversity of the XIXa subtype family of C. felis. The common occurrence of this subtype family in both humans and cats suggests that there could be cross-species transmission of C. felis.


Author(s):  
Ren-feng Zhang ◽  
Yu-xia Man ◽  
Yuan-yuan Bai ◽  
Chun-hong Shao ◽  
Chun-mei Liu ◽  
...  

2006 ◽  
Vol 106 (3) ◽  
pp. 297-306 ◽  
Author(s):  
A. Llorens ◽  
M.J. Hinojo ◽  
R. Mateo ◽  
M.T. González-Jaén ◽  
F.M. Valle-Algarra ◽  
...  

2017 ◽  
Vol 48 ◽  
pp. 102-108
Author(s):  
Shahzad Shaukat ◽  
Mehar Angez ◽  
Tariq Mahmood ◽  
Muhammad Masroor Alam ◽  
Salmaan Sharif ◽  
...  

2003 ◽  
Vol 93 (5) ◽  
pp. 596-603 ◽  
Author(s):  
Jeri D. Barak ◽  
Robert L. Gilbertson

Bacterial leafspot of lettuce (BLS), caused by Xanthomonas campes-tris pv. vitians, has become more prevalent in many lettuce-growing areas of the world over the past decade. To gain insight into the nature of these outbreaks, the genetic variation in X. campestris pv. vitians strains from different geographical locations was examined. All strains were first tested for pathogenicity on lettuce plants, and then genetic diversity was assessed using (i) gas-chromatographic analysis of bacterial fatty acids, (ii) polymerase chain reaction analysis of repetitive DNA sequences (rep-PCR), (iii) DNA sequence analysis of the internal transcribed spacer region 1 (ITS1) of the ribosomal RNA, (iv) restriction fragment length polymorphism (RFLP) analysis of total genomic DNA with a repetitive DNA probe, and (v) detection and partial characterization of plasmid DNA. Fatty acid analysis identified all pathogenic strains as X. campestris, but did not consistently identify all the strains as X. campestris pv. vitians. The rep-PCR fingerprints and ITS1 sequences of all pathogenic X. campestris pv. vitians strains examined were identical, and distinct from those of the other X. campestris pathovars. Thus, these characteristics did not reveal genetic diversity among X. campestris pv. vitians strains, but did allow for differentiation of X. campestris pathovars. Genetic diversity among X. campestris pv. vitians strains was revealed by RFLP analysis with a repetitive DNA probe and by characterization of plasmid DNA. This diversity was greatest among strains from different geographical regions, although diversity among strains from the same location also was detected. The results of this study suggest that these X. campestris pv. vitians strains are not clonal, but comprise a relatively homogeneous group.


Sign in / Sign up

Export Citation Format

Share Document