scholarly journals Formal constraint-based compilation for noisy intermediate-scale quantum systems

2019 ◽  
Vol 66 ◽  
pp. 102-112 ◽  
Author(s):  
Prakash Murali ◽  
Ali Javadi-Abhari ◽  
Frederic T. Chong ◽  
Margaret Martonosi
Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 539
Author(s):  
Johannes Jakob Meyer

The recent advent of noisy intermediate-scale quantum devices, especially near-term quantum computers, has sparked extensive research efforts concerned with their possible applications. At the forefront of the considered approaches are variational methods that use parametrized quantum circuits. The classical and quantum Fisher information are firmly rooted in the field of quantum sensing and have proven to be versatile tools to study such parametrized quantum systems. Their utility in the study of other applications of noisy intermediate-scale quantum devices, however, has only been discovered recently. Hoping to stimulate more such applications, this article aims to further popularize classical and quantum Fisher information as useful tools for near-term applications beyond quantum sensing. We start with a tutorial that builds an intuitive understanding of classical and quantum Fisher information and outlines how both quantities can be calculated on near-term devices. We also elucidate their relationship and how they are influenced by noise processes. Next, we give an overview of the core results of the quantum sensing literature and proceed to a comprehensive review of recent applications in variational quantum algorithms and quantum machine learning.


1993 ◽  
Vol 163 (9) ◽  
pp. 1 ◽  
Author(s):  
B.D. Agap'ev ◽  
M.B. Gornyi ◽  
B.G. Matisov ◽  
Yu.V. Rozhdestvenskii

2018 ◽  
Vol 189 (05) ◽  
Author(s):  
Vladislav Yu. Shishkov ◽  
Evgenii S. Andrianov ◽  
Aleksandr A. Pukhov ◽  
Aleksei P. Vinogradov ◽  
A.A. Lisyansky

1998 ◽  
Vol 4 (6) ◽  
pp. 99-102
Author(s):  
Yumiko SAWADA ◽  
Masashi YOSHIDA ◽  
Tsutomu NAGAOKA ◽  
Shintaro MICHIKOSHI ◽  
Nagao HORI

Author(s):  
Richard Healey

Often a pair of quantum systems may be represented mathematically (by a vector) in a way each system alone cannot: the mathematical representation of the pair is said to be non-separable: Schrödinger called this feature of quantum theory entanglement. It would reflect a physical relation between a pair of systems only if a system’s mathematical representation were to describe its physical condition. Einstein and colleagues used an entangled state to argue that its quantum state does not completely describe the physical condition of a system to which it is assigned. A single physical system may be assigned a non-separable quantum state, as may a large number of systems, including electrons, photons, and ions. The GHZ state is an example of an entangled polarization state that may be assigned to three photons.


Sign in / Sign up

Export Citation Format

Share Document