scholarly journals Fisher Information in Noisy Intermediate-Scale Quantum Applications

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 539
Author(s):  
Johannes Jakob Meyer

The recent advent of noisy intermediate-scale quantum devices, especially near-term quantum computers, has sparked extensive research efforts concerned with their possible applications. At the forefront of the considered approaches are variational methods that use parametrized quantum circuits. The classical and quantum Fisher information are firmly rooted in the field of quantum sensing and have proven to be versatile tools to study such parametrized quantum systems. Their utility in the study of other applications of noisy intermediate-scale quantum devices, however, has only been discovered recently. Hoping to stimulate more such applications, this article aims to further popularize classical and quantum Fisher information as useful tools for near-term applications beyond quantum sensing. We start with a tutorial that builds an intuitive understanding of classical and quantum Fisher information and outlines how both quantities can be calculated on near-term devices. We also elucidate their relationship and how they are influenced by noise processes. Next, we give an overview of the core results of the quantum sensing literature and proceed to a comprehensive review of recent applications in variational quantum algorithms and quantum machine learning.

2020 ◽  
Vol 20 (9&10) ◽  
pp. 787-806 ◽  
Author(s):  
Steven Herbert

This paper addresses the problem of finding the depth overhead that will be incurred when running quantum circuits on near-term quantum computers. Specifically, it is envisaged that near-term quantum computers will have low qubit connectivity: each qubit will only be able to interact with a subset of the other qubits, a reality typically represented by a qubit interaction graph in which a vertex represents a qubit and an edge represents a possible direct 2-qubit interaction (gate). Thus the depth overhead is unavoidably incurred by introducing swap gates into the quantum circuit to enable general qubit interactions. This paper proves that there exist quantum circuits where a depth overhead in Omega(\log n) must necessarily be incurred when running quantum circuits with n qubits on quantum computers whose qubit interaction graph has finite degree, but that such a logarithmic depth overhead is achievable. The latter is shown by the construction of a 4-regular qubit interaction graph and associated compilation algorithm that can execute any quantum circuit with only a logarithmic depth overhead.


2021 ◽  
Vol 3 (1) ◽  
pp. 137-152
Author(s):  
Pejman Jouzdani ◽  
Stefan Bringuier

The use of near-term quantum devices that lack quantum error correction, for addressing quantum chemistry and physics problems, requires hybrid quantum-classical algorithms and techniques. Here, we present a process for obtaining the eigenenergy spectrum of electronic quantum systems. This is achieved by projecting the Hamiltonian of a quantum system onto a limited effective Hilbert space specified by a set of computational bases. From this projection, an effective Hamiltonian is obtained. Furthermore, a process for preparing short depth quantum circuits to measure the corresponding diagonal and off-diagonal terms of the effective Hamiltonian is given, whereby quantum entanglement and ancilla qubits are used. The effective Hamiltonian is then diagonalized on a classical computer using numerical algorithms to obtain the eigenvalues. The use case of this approach is demonstrated for ground state and excited states of BeH2 and LiH molecules, and the density of states, which agrees well with exact solutions. Additionally, hardware demonstration is presented using IBM quantum devices for H2 molecule.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1690
Author(s):  
Teague Tomesh ◽  
Pranav Gokhale ◽  
Eric R. Anschuetz ◽  
Frederic T. Chong

Many quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup over classical algorithms. Recent work by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue, relying on coresets to minimize the data loading overhead of quantum algorithms. We investigated using this paradigm to perform k-means clustering on near-term quantum computers, by casting it as a QAOA optimization instance over a small coreset. We used numerical simulations to compare the performance of this approach to classical k-means clustering. We were able to find data sets with which coresets work well relative to random sampling and where QAOA could potentially outperform standard k-means on a coreset. However, finding data sets where both coresets and QAOA work well—which is necessary for a quantum advantage over k-means on the entire data set—appears to be challenging.


2020 ◽  
Vol 19 (10) ◽  
Author(s):  
Laszlo Gyongyosi

Abstract Superconducting gate-model quantum computer architectures provide an implementable model for practical quantum computations in the NISQ (noisy intermediate scale quantum) technology era. Due to hardware restrictions and decoherence, generating the physical layout of the quantum circuits of a gate-model quantum computer is a challenge. Here, we define a method for layout generation with a decoherence dynamics estimation in superconducting gate-model quantum computers. We propose an algorithm for the optimal placement of the quantum computational blocks of gate-model quantum circuits. We study the effects of capacitance interference on the distribution of the Gaussian noise in the Josephson energy.


2022 ◽  
Vol 32 (1) ◽  
Author(s):  
ShiJie Wei ◽  
YanHu Chen ◽  
ZengRong Zhou ◽  
GuiLu Long

AbstractQuantum machine learning is one of the most promising applications of quantum computing in the noisy intermediate-scale quantum (NISQ) era. We propose a quantum convolutional neural network(QCNN) inspired by convolutional neural networks (CNN), which greatly reduces the computing complexity compared with its classical counterparts, with O((log2M)6) basic gates and O(m2+e) variational parameters, where M is the input data size, m is the filter mask size, and e is the number of parameters in a Hamiltonian. Our model is robust to certain noise for image recognition tasks and the parameters are independent on the input sizes, making it friendly to near-term quantum devices. We demonstrate QCNN with two explicit examples. First, QCNN is applied to image processing, and numerical simulation of three types of spatial filtering, image smoothing, sharpening, and edge detection is performed. Secondly, we demonstrate QCNN in recognizing image, namely, the recognition of handwritten numbers. Compared with previous work, this machine learning model can provide implementable quantum circuits that accurately corresponds to a specific classical convolutional kernel. It provides an efficient avenue to transform CNN to QCNN directly and opens up the prospect of exploiting quantum power to process information in the era of big data.


2011 ◽  
Vol 09 (06) ◽  
pp. 1459-1497 ◽  
Author(s):  
ABDULLAH M. ILIYASU ◽  
PHUC Q. LE ◽  
FANGYAN DONG ◽  
KAORU HIROTA

Adopting a generalization of the DiVincenzo criteria for the physical realization of quantum devices, a standalone component each, is proposed to prepare, manipulate, and measure the various content required to represent and produce movies on quantum computers. The quantum CD encodes, prepares, and initializes the broad content or key frames conveying the movie script. The quantum player uses the simple motion operations to manipulate the contents of the key frames in order to interpolate the missing viewing frames required to effectively depict the shots and scenes of the movie. The movie reader combines the projective measurement technique and the ancilla-driven quantum computation to retrieve the classical movie sequence comprising of both the key and viewing frames for each shot. At appropriate frame transition rates, this sequence creates the impression of continuity in order to depict the various movements and actions in the movie. Two well-thought-out examples demonstrate the feasibility of the proposed framework. Concatenated, these components together facilitate the proposed framework for quantum movie representation and production, thus, opening the door towards manipulating quantum circuits aimed at applications for information representation and processing.


2020 ◽  
Vol 8 ◽  
Author(s):  
Hai-Ping Cheng ◽  
Erik Deumens ◽  
James K. Freericks ◽  
Chenglong Li ◽  
Beverly A. Sanders

Chemistry is considered as one of the more promising applications to science of near-term quantum computing. Recent work in transitioning classical algorithms to a quantum computer has led to great strides in improving quantum algorithms and illustrating their quantum advantage. Because of the limitations of near-term quantum computers, the most effective strategies split the work over classical and quantum computers. There is a proven set of methods in computational chemistry and materials physics that has used this same idea of splitting a complex physical system into parts that are treated at different levels of theory to obtain solutions for the complete physical system for which a brute force solution with a single method is not feasible. These methods are variously known as embedding, multi-scale, and fragment techniques and methods. We review these methods and then propose the embedding approach as a method for describing complex biochemical systems, with the parts not only treated with different levels of theory, but computed with hybrid classical and quantum algorithms. Such strategies are critical if one wants to expand the focus to biochemical molecules that contain active regions that cannot be properly explained with traditional algorithms on classical computers. While we do not solve this problem here, we provide an overview of where the field is going to enable such problems to be tackled in the future.


2021 ◽  
Author(s):  
Yordan Yordanov ◽  
Vasileios Armaos ◽  
Crispin Barnes ◽  
David Arvidsson-Shukur

Abstract Molecular simulations with the variational quantum eigensolver (VQE) are a promising application for emerging noisy intermediate-scale quantum computers. Constructing accurate molecular ansatze that are easy to optimize and implemented by shallow quantum circuits is crucial for the successful implementation of such simulations. Ansatze are, generally, constructed as series of fermionic-excitation evolutions. Instead, we demonstrate the usefulness of constructing ansatze with ``qubit-excitation evolutions', which, contrary to fermionic excitation evolutions, obey ``qubit commutation relations'. We show that qubit excitation evolutions, despite the lack of some of the physical features of fermionic excitation evolutions, accurately construct ansatze, while requiring asymptotically fewer gates. Utilizing qubit excitation evolutions, we introduce the iterative qubit excitation based VQE (IQEB-VQE) algorithm. The IQEB-VQE performs molecular simulations using a problem-tailored ansatz, grown iteratively by appending evolutions of single and double qubit excitation operators. By performing numerical simulations for small molecules, we benchmark the IQEB-VQE, and compare it against other competitive VQE algorithms. In terms of circuit efficiency and time complexity, we find that the IQEB-VQE systematically outperforms the previously most circuit-efficient, practically scalable VQE algorithms.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 553
Author(s):  
Xiao Xiao ◽  
J. K. Freericks ◽  
A. F. Kemper

Topological protection is employed in fault-tolerant error correction and in developing quantum algorithms with topological qubits. But, topological protection intrinsic to models being simulated, also robustly protects calculations, even on NISQ hardware. We leverage it by simulating Kitaev-inspired models on IBM quantum computers and accurately determining their phase diagrams. This requires constructing conventional quantum circuits for Majorana braiding to prepare the ground states of Kitaev-inspired models. The entanglement entropy is then measured to calculate the quantum phase boundaries. We show how maintaining particle-hole symmetry when sampling through the Brillouin zone is critical to obtaining high accuracy. This work illustrates how topological protection intrinsic to a quantum model can be employed to perform robust calculations on NISQ hardware, when one measures the appropriate protected quantum properties. It opens the door for further simulation of topological quantum models on quantum hardware available today.


Sign in / Sign up

Export Citation Format

Share Document