Special Session: Impact of Noise on Quantum Algorithms in Noisy Intermediate-Scale Quantum Systems

Author(s):  
Daniel Volya ◽  
Prabhat Mishra
Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 539
Author(s):  
Johannes Jakob Meyer

The recent advent of noisy intermediate-scale quantum devices, especially near-term quantum computers, has sparked extensive research efforts concerned with their possible applications. At the forefront of the considered approaches are variational methods that use parametrized quantum circuits. The classical and quantum Fisher information are firmly rooted in the field of quantum sensing and have proven to be versatile tools to study such parametrized quantum systems. Their utility in the study of other applications of noisy intermediate-scale quantum devices, however, has only been discovered recently. Hoping to stimulate more such applications, this article aims to further popularize classical and quantum Fisher information as useful tools for near-term applications beyond quantum sensing. We start with a tutorial that builds an intuitive understanding of classical and quantum Fisher information and outlines how both quantities can be calculated on near-term devices. We also elucidate their relationship and how they are influenced by noise processes. Next, we give an overview of the core results of the quantum sensing literature and proceed to a comprehensive review of recent applications in variational quantum algorithms and quantum machine learning.


2009 ◽  
Vol 16 (04) ◽  
pp. 407-412
Author(s):  
Hoshang Heydari

We construct a quantum gate entangler for multi-qubit states based on a selective phase rotation transform. In particular, we establish a relation between the quantum integral transform and the quantum gate entangler in terms of universal controlled gates for multi-qubit states. Our result gives an effective way of constructing topological and geometrical quantum gate entanglers for multipartite quantum systems, which could also lead to a construction of geometrical quantum algorithms.


2021 ◽  
Vol 2056 (1) ◽  
pp. 012059
Author(s):  
I N Balaba ◽  
G S Deryabina ◽  
I A Pinchuk ◽  
I V Sergeev ◽  
S B Zabelina

Abstract The article presents a historical overview of the development of the mathematical idea of a quantum computing model - a new computational strategy based on the postulates of quantum mechanics and having advantages over the traditional computational model based on the Turing machine; clarified the features of the operation of multi-qubit quantum systems, which ensure the creation of efficient algorithms; the principles of quantum computing are outlined and a number of efficient quantum algorithms are described that allow solving the problem of exponential growth of the complexity of certain problems.


2005 ◽  
pp. 1-13
Author(s):  
Th. Beth ◽  
M. Grassl ◽  
D. Janzing ◽  
M. Rötteler ◽  
P. Wocjan ◽  
...  

2021 ◽  
Vol 38 (8) ◽  
pp. 080301
Author(s):  
Huan-Yu Liu ◽  
Tai-Ping Sun ◽  
Yu-Chun Wu ◽  
Guo-Ping Guo

2013 ◽  
Vol 14 (3) ◽  
pp. 399
Author(s):  
Adriano Maron ◽  
Renata Reiser ◽  
Maurício Pilla ◽  
Adenauer Yamin

The simulation of quantum algorithms in classic computers is a task which requires high processing and storing capabilities, limiting the size of quantum systems supported by the simulators. However, optimizations for reduction of temporal and spatial complexities are promising and expanding the capabilities of some simulators. The main contribution of this work consists in designing optimizations by the description of quantum transformations using Quantum Processes and Partial Quantum Processes conceived in the qGM theoretical model. These processes, when computed on the VPE-qGM execution environment, result in lower execution time and better performance, allowing the simulation of more complex quantum algorithms. The performance evaluation of this proposal was carried out by benchmarks used in similar works and included the sequential simulation of quantum algorithms up to 24 qubits. The results show a great improvement when compared to the previous version of the environment and indicate possibilities of advances in this research.


2017 ◽  
Vol 17 (11&12) ◽  
pp. 901-947 ◽  
Author(s):  
Andrew M. Childs ◽  
Tongyang Li

Quantum algorithms for simulating Hamiltonian dynamics have been extensively developed, but there has been much less work on quantum algorithms for simulating the dynamics of open quantum systems. We give the first efficient quantum algorithms for simulating Markovian quantum dynamics generated by Lindbladians that are not necessarily local. We introduce two approaches to simulating sparse Lindbladians. First, we show how to simulate Lindbladians that act within small invariant subspaces using a quantum algorithm to implement sparse Stinespring isometries. Second, we develop a method for simulating sparse Lindblad operators by concatenating a sequence of short-time evolutions. We also show limitations on Lindbladian simulation by proving a no–fast-forwarding theorem for simulating sparse Lindbladians in black-box models.


2019 ◽  
Vol 66 ◽  
pp. 102-112 ◽  
Author(s):  
Prakash Murali ◽  
Ali Javadi-Abhari ◽  
Frederic T. Chong ◽  
Margaret Martonosi

Sign in / Sign up

Export Citation Format

Share Document