Software Reliability Growth Fault Correction Model Based on Machine Learning and Neural Network Algorithm

2021 ◽  
Vol 80 ◽  
pp. 103538
Author(s):  
Liya Li
2020 ◽  
pp. 1-11
Author(s):  
Hongjiang Ma ◽  
Xu Luo

The irrationality between the procurement and distribution of the logistics system increases unnecessary circulation links and greatly reduces logistics efficiency, which not only causes a waste of transportation resources, but also increases logistics costs. In order to improve the operation efficiency of the logistics system, based on the improved neural network algorithm, this paper combines the logistic regression algorithm to construct a logistics demand forecasting model based on the improved neural network algorithm. Moreover, according to the characteristics of the complexity of the data in the data mining task itself, this article optimizes the ladder network structure, and combines its supervisory decision-making part with the shallow network to make the model more suitable for logistics demand forecasting. In addition, this paper analyzes the performance of the model based on examples and uses the grey relational analysis method to give the degree of correlation between each influencing factor and logistics demand. The research results show that the model constructed in this paper is reasonable and can be analyzed from a practical perspective.


Author(s):  
PARMOD KUMAR KAPUR ◽  
V. S. SARMA YADAVALLI ◽  
SUNIL KUMAR KHATRI ◽  
MASHAALLAH BASIRZADEH

Modeling of software reliability has gained lot of importance in recent years. Use of software-critical applications has led to tremendous increase in amount of work being carried out in software reliability growth modeling. Number of analytic software reliability growth models (SRGM) exists in literature. They are based on some assumptions; however, none of them works well across different environments. The current software reliability literature is inconclusive as to which models and techniques are best, and some researchers believe that each organization needs to try several approaches to determine what works best for them. Data-driven artificial neural-network (ANN) based models, on other side, provide better software reliability estimation. In this paper we present a new dimension to build an ensemble of different ANN to improve the accuracy of estimation for complex software architectures. Model has been validated on two data sets cited from the literature. Results show fair improvement in forecasting software reliability over individual neural-network based models.


Sign in / Sign up

Export Citation Format

Share Document