Pyrene-functionalized silsesquioxane as fluorescent nanoporous material for antibiotics detection and removal

2020 ◽  
Vol 300 ◽  
pp. 110135 ◽  
Author(s):  
Huizhong Yang ◽  
Hongzhi Liu
Author(s):  
Xiaoya Peng ◽  
Dan Li ◽  
Yuanting Li ◽  
Haibo Xing ◽  
Wei Deng

Antibiotic contaminants in aqueous media pose serious threat to human and ecological environments. Therefore, it is necessary to develop robust strategies to detect antibiotic residues. For this purpose, a self-assembly...


2021 ◽  
Vol 102 ◽  
pp. 92-101
Author(s):  
Saba Ghasemi ◽  
Maryam Yousefi ◽  
Ahmad Nikseresht ◽  
Hoda Omidi

CrystEngComm ◽  
2011 ◽  
Vol 13 (8) ◽  
pp. 3064 ◽  
Author(s):  
Sibaprasad Maity ◽  
Poulami Jana ◽  
Debasish Haldar*

2013 ◽  
Vol 36 (11) ◽  
pp. 1826-1833 ◽  
Author(s):  
Elahe Moazzen ◽  
Homeira Ebrahimzadeh ◽  
Mostafa M. Amini ◽  
Omid Sadeghi

2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3749-3756
Author(s):  
Ya Han ◽  
Shuai Li ◽  
Hai-Dong Liu ◽  
Weipeng Cui

In order to deeply investigate the gas heat conduction of nanoporous aerogel, a model of gas heat conduction was established based on microstructure of aerogel. Lattice Boltzmann method was used to simulate the temperature distribution and gas thermal conductivity at different size, and the size effects of gas heat conduction have had been obtained under micro-scale conditions. It can be concluded that the temperature jump on the boundary was not obvious and the thermal conductivity remained basically constant when the value of Knudsen number was less than 0.01; as the value of Knudsen number increased from 0.01 to 0.1, there was a clear temperature jump on the boundary and the thermal conductivity tended to decrease and the effect of boundary scattering increased drastically, as the value of Knudsen number was more than 0.1, the temperature jump increased significantly on the boundary, furtherly, the thermal conductivity decreased dramatically, and the size effects were significantly.


2018 ◽  
Vol 28 (1) ◽  
pp. 33
Author(s):  
Tati Ariyanti

Bacteriophages are viruses that have ability to attack bacterial cells in specific receptors, infect, multiply in bacterial cells and eventually lyse bacterial cells. This unique bacteriophage character is highly beneficial because it is harmless to mammalian cells and does not interfere with natural microbes. Bacteriophages are easy to obtain because they are widespread in the environment such as soil, water, animal, and farm waste or food. This paper describes the potential use of bacteriophages to detect pathogen and foodborne pathogen biocontrol. Bacteriophages are very potential to control the growth of pathogenic bacteria both in food industry and environment. Bacteriophages act as antibiotics, detection tool for pathogenic bacteria in the food chain, food biopreservative from pathogen bacteria contamination, and foodborne disease prevention. Although research on bacteriophage in Indonesia has not been widely reported, research on bacteriophage utilization is being carried on.


2022 ◽  
Vol 6 (4) ◽  
pp. 387-394
Author(s):  
D. S. Galchenko ◽  
M. G. Smirnova ◽  
L. I. Sokolova

The problem of wastewater treatment from residual antibiotics is of particular relevance, since these drugs are used in many agricultural sectors. Antibiotics get into water, animal and human bodies, where they can accumulate negatively affecting health. The aim of this article is to study the possibility of using natural aluminosilicate vermiculite sorbent from the Koksharovskoye field (Primorsky Region) for purifying fish processing and fish farming enterprises’ waste water from antibiotics (chloramphenicol, tetracycline, cefazolin, cefuroxime, ceftriaxone, cefepime and and ciprofloxacin) under static and dynamic conditions. The study was carried out on a model wastewater system with injected antibiotics. The purification ability of the model system using the method of spectrophotometric antibiotics detection is analyzed. Under static conditions, the total content of antibiotics varied from 0.25 mg to 1.00 mg per 1 g of sorbent. Under dynamic conditions, the antibiotic content was 0.025 mg per 1 g of sorbent. High values of absorption for all studied antibiotics, except for chloramphenicol, were achieved both in static and dynamic modes. For chloramphenicol, when examined under static conditions, the maximum absorption rate was 45% with the minimum total concentration of antibiotics. With an increase in the load on the sorbent, the degree of absorption decreased to 3%. Thus, vermiculite modified with 7% hydrochloric acid is a promising sorbent for cleaning water bodies from residual antibiotics.


1997 ◽  
Vol 36 (10) ◽  
pp. 1121-1124 ◽  
Author(s):  
Ulrich Simon ◽  
Ferdi Schüth ◽  
Stephan Schunk ◽  
Xiqu Wang ◽  
Friedrich Liebau

Sign in / Sign up

Export Citation Format

Share Document