Cooling of an electronic package using lattice Boltzmann/finite volume method with experimental rheological/thermal analysis of hybrid nanofluid properties

2020 ◽  
Vol 299 ◽  
pp. 112143
Author(s):  
Mehdi Fattahi ◽  
Hamidreza Khakrah ◽  
Mohammad Yaghoub Abdollahzadeh Jamalabadi ◽  
Navid Bagheri ◽  
David Ross
2004 ◽  
Vol 14 (1) ◽  
pp. 12-21
Author(s):  
R. Rotondi ◽  
S. Succi ◽  
G. Bella

Abstract It is shown that the combined use of a mesoscopic lattice Boltzmann solver with finite-volume techniques, both enriched with local-refinement (multiscale) capabilities, permits to describe transport phenomena at fluid-solid interfaces to a degree of detail which may help dispensing with empirical correlations.


2020 ◽  
Vol 37 (6) ◽  
pp. 2155-2175
Author(s):  
Jin Wang ◽  
Yi Wang ◽  
Jing Shi

Purpose Selective laser melting (SLM) is a major additive manufacturing (AM) process in which laser beams are used as the heat source to melt and deposit metals in a layerwise fashion to enable the construction of components of arbitrary complexity. The purpose of this paper is to develop a framework for accurate and fast prediction of the temperature distribution during the SLM process. Design/methodology/approach A fast computation tool is proposed for thermal analysis of the SLM process. It is based on the finite volume method (FVM) and the quiet element method to allow the development of customized functionalities at the source level. The results obtained from the proposed FVM approach are compared against those obtained from the finite element method (FEM) using a well-established commercial software, in terms of accuracy and efficiency. Findings The results show that for simulating the SLM deposition of a cubic block with 81,000, 189,000 and 297,000 cells, the computation takes about 767, 3,041 and 7,054 min, respectively, with the FEM approach; while 174, 679 and 1,630 min with the FVM code. This represents a speedup of around 4.4x. Meanwhile, the average temperature difference between the two is below 6%, indicating good agreement between them. Originality/value The thermal field for the multi-track and multi-layer SLM process is for the first time computed by the FVM approach. This pioneering work on comparing FVM and FEM for SLM applications implies that a fast and simple computing tool for thermal analysis of the SLM process is within the reach, and it delivers comparable accuracy with significantly higher computational efficiency. The research results lay the foundation for a potentially cost-effective tool for investigating the fundamental microstructure evolution, and also optimizing the process parameters in the SLM process.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
M. Goodarzi ◽  
M. R. Safaei ◽  
A. Karimipour ◽  
K. Hooman ◽  
M. Dahari ◽  
...  

Different numerical methods have been implemented to simulate internal natural convection heat transfer and also to identify the most accurate and efficient one. A laterally heated square enclosure, filled with air, was studied. A FORTRAN code based on the lattice Boltzmann method (LBM) was developed for this purpose. The finite difference method was applied to discretize the LBM equations. Furthermore, for comparison purpose, the commercially available CFD package FLUENT, which uses finite volume Method (FVM), was also used to simulate the same problem. Different discretization schemes, being the first order upwind, second order upwind, power law, and QUICK, were used with the finite volume solver where the SIMPLE and SIMPLEC algorithms linked the velocity-pressure terms. The results were also compared with existing experimental and numerical data. It was observed that the finite volume method requires less CPU usage time and yields more accurate results compared to the LBM. It has been noted that the 1st order upwind/SIMPLEC combination converges comparatively quickly with a very high accuracy especially at the boundaries. Interestingly, all variants of FVM discretization/pressure-velocity linking methods lead to almost the same number of iterations to converge but higher-order schemes ask for longer iterations.


Sign in / Sign up

Export Citation Format

Share Document