Novel lactide derivatives of p-tert-butylthiacalix[4]arene: Directed synthesis and molecular recognition of catecholamines

2020 ◽  
pp. 114806
Author(s):  
O.A. Mostovaya ◽  
P.L. Padnya ◽  
D.N. Shurpik ◽  
I.E. Shiabiev ◽  
I.I. Stoikov
2014 ◽  
Vol 10 ◽  
pp. 1354-1364 ◽  
Author(s):  
Melanie Rauschenberg ◽  
Eva-Corrina Fritz ◽  
Christian Schulz ◽  
Tobias Kaufmann ◽  
Bart Jan Ravoo

The molecular recognition of carbohydrates and proteins mediates a wide range of physiological processes and the development of synthetic carbohydrate receptors (“synthetic lectins”) constitutes a key advance in biomedical technology. In this article we report a synthetic lectin that selectively binds to carbohydrates immobilized in a molecular monolayer. Inspired by our previous work, we prepared a fluorescently labeled synthetic lectin consisting of a cyclic dimer of the tripeptide Cys-His-Cys, which forms spontaneously by air oxidation of the monomer. Amine-tethered derivatives of N-acetylneuraminic acid (NANA), β-D-galactose, β-D-glucose and α-D-mannose were microcontact printed on epoxide-terminated self-assembled monolayers. Successive prints resulted in simple microarrays of two carbohydrates. The selectivity of the synthetic lectin was investigated by incubation on the immobilized carbohydrates. Selective binding of the synthetic lectin to immobilized NANA and β-D-galactose was observed by fluorescence microscopy. The selectivity and affinity of the synthetic lectin was screened in competition experiments. In addition, the carbohydrate binding of the synthetic lectin was compared with the carbohydrate binding of the lectins concanavalin A and peanut agglutinin. It was found that the printed carbohydrates retain their characteristic selectivity towards the synthetic and natural lectins and that the recognition of synthetic and natural lectins is strictly orthogonal.


2013 ◽  
Vol 27 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Olga A. Mostovaya ◽  
Maria N. Agafonova ◽  
Andrey V. Galukhin ◽  
Bulat I. Khayrutdinov ◽  
Daut Islamov ◽  
...  

1992 ◽  
Vol 70 (1) ◽  
pp. 254-271 ◽  
Author(s):  
Ulrike Spohr ◽  
Eugenia Paszkiewicz-Hnatiw ◽  
Naohiko Morishima ◽  
Raymond U. Lemieux

The relative potencies of a wide variety of deoxygenated derivatives of the methyl glycoside of α-L-Fuc-(1 → 2)-β-D-Gal-(1 → 4)- β-D-GlcNAc (the H-type 2 human blood group related trisaccharide) for the inhibition of the binding of an artificial H-type 2 antigen by the lectin I of Ulexeuropaeus confirmed the previous evidence that the key and productive interaction involves only the three hydroxyl groups of the α-L-fucose unit, the hydroxyl at the 3-position of the β-D-galactose residue, and the nonpolar groups in their immediate environment. Except for the acetamido group and the hydroxymethyl of the β-D-Gal unit, which stay in the aqueous phase, on complex formation the remaining three hydroxyl groups appear to come to reside at or near the periphery of the combining site since their replacement by hydrogen causes relatively small changes (< ± 1 kcal/mol) in the stability of the complex (ΔG0). Relatively much larger but compensating changes occur for the enthalpy and entropy terms, and these may arise primarily from the differences in the water structure about the periphery of the combining site and the oligosaccharide both prior to and after complexation. It is proposed that steric constraints lead to an ordered state of the water molecules hydrogen-bonded to the polar groups within the cleft formed by the key region of the amphiphilic combining site. Their release to form less ordered clusters of more strongly hydrogen-bonded water molecules in bulk solution would contribute importantly to the driving force for complexation. It is demonstrated that the surface used for the binding of H-type 2-OMe by a monoclonal anti-H antibody is virtually identical to that used by the Ulex lectin. Keywords: molecular recognition, H-type 2 blood group determinant and deoxygenated derivatives, lectin I of Ulexeuropaeus, anti-H-type 2 monoclonal antibody, enthalpy–entropy compensation.


1990 ◽  
Vol 19 (1) ◽  
pp. 169-172 ◽  
Author(s):  
Yasuhiro Ikeura ◽  
Yoshihiro Honda ◽  
Kazue Kurihara ◽  
Toyoki Kunitake

Sign in / Sign up

Export Citation Format

Share Document