Structural properties of CH3CN–SO2 in the gas phase and condensed-phase media via density functional theory and infrared spectroscopy

2009 ◽  
Vol 919 (1-3) ◽  
pp. 312-320 ◽  
Author(s):  
Audrey A. Eigner ◽  
John P. Wrass ◽  
Elizabeth L. Smith ◽  
Christopher C. Knutson ◽  
James A. Phillips
Soft Matter ◽  
2021 ◽  
Author(s):  
Michael Bley ◽  
Joachim Dzubiella ◽  
Arturo Moncho Jorda

We employ reactive dynamical density functional theory (R-DDFT) and reactive Brownian dynamics (R-BD) simulations to study the non-equilibrium structure and phase behavior of an active dispersion of soft Gaussian colloids...


2021 ◽  
pp. 138675
Author(s):  
Manal Abed Mohammed ◽  
Heider A. Abdulhussein ◽  
Muhsen Abood Muhsen Al-ibadi ◽  
Rajesh Kumar Raju ◽  
Roy L. Johnston

2021 ◽  
pp. 1-12
Author(s):  
Halimeh Rajabzadeh ◽  
Ayla Sharafat ◽  
Maryam Abbasi ◽  
Maryam Eslami Gharaati ◽  
Iraj Alipourfard

Favipiravir (Fav) has become a well-known drug for medication of patients by appearance of COVID-19. Heterocyclic structure and connected peptide group could make changes for Fav yielding different features from those required features. Therefore, it is indeed a challenging task to prepare a Fav compound with specific features of desired function. In this work, existence of eight Fav structures by tautomeric formations and peptide group rotations were obtained using density functional theory (DFT) optimization calculations. Gas phase, octanol solution, and water solution were employed to show impact of solution on features of Fav besides obtaining partition coefficients (LogP) for Fav compounds. Significant impacts of solutions were seen on features of Fav with the obtained LogP order: Fav-7 >  Fav-8 >  Fav-4 >  Fav-3 >  Fav-2 >  Fav-5 >  Fav-1 >  Fav-6. As a consequence, internal changes yielded significant impacts on features of Fav affirming its carful medication of COVID-19 patients.


Sign in / Sign up

Export Citation Format

Share Document