reflection absorption infrared spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 11)

H-INDEX

30
(FIVE YEARS 1)

Author(s):  
Tara L. Salter ◽  
James W. Stubbing ◽  
Lorna Brigham ◽  
Wendy A. Brown

Monocyclic aromatic hydrocarbons such as benzene, toluene and xylene are thought to play an important role as precursors to the formation of polycyclic aromatic hydrocarbons (PAHs) and their methylated counterparts in a range of astrophysical environments. Benzene has been detected in two carbon rich objects and models have predicted that it could also be present in the interstellar medium (ISM). It has hence been speculated that small aromatic molecules are present in molecular clouds in the ISM, although they have not been detected to date. If they are present in the ISM, they are likely to exist in water-ice dominated icy mantles on the surface of dust grains.We present a laboratory study of benzene, toluene and two xylene isomers (ortho- and para-xylene) in the presence of water ice on a carbonaceous model dust grain surface (highly oriented pyrolytic graphite, HOPG). Temperature programmed desorption (TPD) shows how the desorption of the molecules is affected by the presence of water ice. The importance of these data for astrophysical situations is demonstrated by the use of TPD-derived kinetic parameters to generate a simple model of desorption in dense molecular clouds on an astrophysical timescale. Since benzene, toluene and xylene have not been detected in water-dominated icy mantles to date, desorption has been simulated in a range of different water-containing environments to show the different behaviour expected depending on ice composition. The simulations demonstrate how future observations of aromatic molecules in dense molecular clouds at known temperatures could reveal which environments the molecules are in. Data from these experiments are also used to predict the behaviour of other, larger, aromatic molecules such as PAHs. Reflection absorption infrared spectroscopy (RAIRS) is also used to record the infrared spectra of the small molecules in different water ice configurations. These spectra can be used to aid identification of these icy aromatics in future observations, such as those that will be possible with the James Webb Space Telescope (JWST). In all cases, spectra of mixed ices consisting of the aromatic molecule and amorphous water ice show evidence of interactions between the water ice and the aromatic species.


Author(s):  
Emily R. Ingman ◽  
Amber Shepherd ◽  
Wendy A. Brown

Surface science methodologies, such as reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD), are ideally suited to studying the interaction of molecules with model astrophysical surfaces. Here we describe the use of RAIRS and TPD to investigate the adsorption, interactions and thermal processing of acetonitrile and water containing model ices grown under astrophysical conditions on a graphitic dust grain analogue surface. Experiments show that acetonitrile physisorbs on the graphitic surface at all exposures. At the lowest coverages, repulsions between the molecules lead to a decreasing desorption energy with increasing coverage. Analysis of TPD data gives monolayer desorption energies ranging from 28.8 - 39.2 kJ mol-1 and an average multilayer desorption energy of 43.8 kJ mol-1. When acetonitrile is adsorbed in the presence of water ice, the desorption energy of monolayer acetonitrile shows evidence of desorption with a wide range of energies. An estimate of the desorption energy of acetonitrile from CI shows that it is increased to ~37 kJ mol-1 at the lowest exposures of acetonitrile. Amorphous water ice also traps acetonitrile on the graphite surface past its natural desorption temperature, leading to volcano and co-desorption. RAIRS data show that the C≡N vibration shifts, indicative of an interaction between the acetonitrile and the water ice surface.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5633
Author(s):  
Zenonas Kuodis ◽  
Ieva Matulaitienė ◽  
Marija Špandyreva ◽  
Linas Labanauskas ◽  
Sigitas Stončius ◽  
...  

Multifunctional amide-containing self-assembled monolayers (SAMs) provide prospects for the construction of interfaces with required physicochemical properties and distinctive stability. In this study, we report the synthesis of amide-containing thiols with terminal phenylalanine (Phe) ring functionality (HS(CH2)7CONH(CH2)2C6H5) and the characterization of the formation of SAMs from these thiols on gold by reflection absorption infrared spectroscopy (RAIRS). For reliable assignments of vibrational bands, ring deuterated analogs were synthesized and studied as well. Adsorption time induced changes in Amide-II band frequency and relative intensity of Amide-II/Amide-I bands revealed two-state sigmoidal form dependence with a transition inflection points at 2.2 ± 0.5 and 4.7 ± 0.5 min, respectively. The transition from initial (disordered) to final (hydrogen-bonded, ordered) structure resulted in increased Amide-II frequency from 1548 to 1557 cm−1, which is diagnostic for a strongly hydrogen-bonded amide network in trans conformation. However, the lateral interactions between the alkyl chains were found to be somewhat reduced when compared with well-ordered alkane thiol monolayers.


2020 ◽  
Vol 494 (3) ◽  
pp. 4119-4129
Author(s):  
K A K Gadallah ◽  
A Sow ◽  
E Congiu ◽  
S Baouche ◽  
F Dulieu

ABSTRACT Sticking of gas-phase methanol on different cold surfaces – gold, 13CO, and amorphous solid water (ASW) ice – was studied as a function of surface temperature (7–40 K). In an ultrahigh-vacuum system, reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption methods were simultaneously used to measure methanol sticking efficiency. Methanol band strengths obtained by RAIRS vary greatly depending on the type of the surface. Nevertheless, both methods indicate that the sticking of methanol on different surfaces varies with surface temperature. The sticking efficiency decreases by 30${{\ \rm per\ cent}}$ as the surface temperature goes from 7 to 16 K, then gradually increases until the temperature is 40 K, reaching approximately the initial value found at 7 K. The sticking of methanol differs slightly from one surface to another. At low temperature, it has the lowest values on gold, intermediate values on water ice, and the highest values are found on CO ice, although these differences are smaller than those observed with temperature variation. There exists probably a turning point during the structural organization of methanol ice at 16 K, which makes the capture of methanol from the gas phase less efficient. We wonder if this observation could explain the surprising high abundance of gaseous methanol observed in dense interstellar cores, where it should accrete on grains. In this regard, a 30${{\ \rm per\ cent}}$ reduction of the sticking is not sufficient in itself but transposed to astrophysical conditions dominated by cold gas (∼15 K), which could reduce the sticking efficiency by two orders of magnitude.


2020 ◽  
Vol 10 (4) ◽  
pp. 1284
Author(s):  
Hangil Lee ◽  
Hyun Sung Kim

The structures and stability levels of leucine (Leu) and tyrosine (Tyr) adsorbed on a Cu(110) surface, at initial levels of coverage (less than 0.25 monolayer), were investigated using reflection–absorption infrared spectroscopy and high-resolution photoemission spectroscopy (HRPES), as well as by performing density functional theory calculations. At an initial coverage, the O–H dissociation bonded structure was indicated from the spectral results to be the most favorable structure for Leu adsorbed on the Cu(110) surface, whereas the O–H dissociated-N dative bonded structure was most favorable for adsorbed Tyr. These models were further supported by the results of experiments, in which the systems were exposed to other molecules and HRPES was used to monitor whether the amine or carboxylic groups of the adsorbed amino acids became reactive.


Author(s):  
T.T. Magkoev ◽  

Adsorption of nitic oxide molecules NO on the surface of structurally ordered 1, 2 and 3 monolayer thick nickel films deposited onto W(110) surface has been studied by means of reflection-absorption infrared spectroscopy. The structure of nickel films at all thicknesses studied corresponds to Ni(111) crystal. The IR spectra of NO molecules adsorbed on a 3 monolayer Ni film correspond to those of NO on bulk Ni(111) crystal. At lower film thickness there are differences more pronounced for a monolayer film. This is due to additional effect of underlying W(110) support upon the intramolecular NO bond, and/or to some distortion of (111) structure of monolayer film, compared to bulk Ni(111), because of potential relief of the substrate and, consequently, change of adsorption geometry and electron state of NO molecules.


Sign in / Sign up

Export Citation Format

Share Document