soft colloids
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 18)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 118 (37) ◽  
pp. e2109560118
Author(s):  
Giovanni Del Monte ◽  
Domenico Truzzolillo ◽  
Fabrizio Camerin ◽  
Andrea Ninarello ◽  
Edouard Chauveau ◽  
...  

Thermoresponsive microgels are one of the most investigated types of soft colloids, thanks to their ability to undergo a Volume Phase Transition (VPT) close to ambient temperature. However, this fundamental phenomenon still lacks a detailed microscopic understanding, particularly regarding the presence and the role of charges in the deswelling process. This is particularly important for the widely used poly(N-isopropylacrylamide)–based microgels, where the constituent monomers are neutral but charged groups arise due to the initiator molecules used in the synthesis. Here, we address this point combining experiments with state-of-the-art simulations to show that the microgel collapse does not happen in a homogeneous fashion, but through a two-step mechanism, entirely attributable to electrostatic effects. The signature of this phenomenon is the emergence of a minimum in the ratio between gyration and hydrodynamic radii at the VPT. Thanks to simulations of microgels with different cross-linker concentrations, charge contents, and charge distributions, we provide evidence that peripheral charges arising from the synthesis are responsible for this behavior and we further build a universal master curve able to predict the two-step deswelling. Our results have direct relevance on fundamental soft condensed matter science and on applications where microgels are involved, ranging from materials to biomedical technologies.


2021 ◽  
Vol 22 (8) ◽  
pp. 4032
Author(s):  
Silvia Franco ◽  
Elena Buratti ◽  
Valentina Nigro ◽  
Emanuela Zaccarelli ◽  
Barbara Ruzicka ◽  
...  

The phase behaviour of soft colloids has attracted great attention due to the large variety of new phenomenologies emerging from their ability to pack at very high volume fractions. Here we report rheological measurements on interpenetrated polymer network microgels composed of poly(N-isopropylacrylamide) (PNIPAM) and polyacrylic acid (PAAc) at fixed PAAc content as a function of weight concentration. We found three different rheological regimes characteristic of three different states: a Newtonian shear-thinning fluid, an attractive glass characterized by a yield stress, and a jamming state. We discuss the possible molecular mechanisms driving the formation of these states.


2021 ◽  
Vol 24 (1) ◽  
pp. 13602
Author(s):  
A. Mondal ◽  
L. Premkumar ◽  
S.P. Das

We consider the link between fragility and elasticity that follows from the analysis of the data for a set of soft colloid materials consisting of deformable spheres reported by [Mattsson et al., Nature, 2009, 462, 83]. The present work makes a quantitative analysis through an explicit definition for fragility index m in terms of density dependence, extending the corresponding formula of m for molecular systems in terms of temperature dependence. In addition, we fit the data for the high-frequency shear modulus for the respective soft-colloid to a corresponding theoretical expression for the same modulus. This expression for the elastic constant is in terms of the corresponding pair correlation function for the liquid treated as of uniform density. The pair correlation function is adjusted through a proper choice of the parameters for the two body interaction potential for the respective soft-colloid material. The nature of correlation between the fragility and Poisson ratio observed for the soft colloids is qualitatively different, as compared to the same for molecular glasses. The observed link between fragility of a metastable liquid and its elastic coefficients is a manifestation of the effects of structure of the fluid on its dynamics. The present work thus analyses the data on soft colloids and by introducing definitions from statistical mechanics obtains a correlation between kinetic fragility and Poissons's ratio for the soft material.


2021 ◽  
Vol 154 (7) ◽  
pp. 079901
Author(s):  
José Ruiz-Franco ◽  
Diego Jaramillo-Cano ◽  
Manuel Camargo ◽  
Christos N. Likos ◽  
Emanuela Zaccarelli

Author(s):  
Merin Jose ◽  
Muraleedharapai Mayarani ◽  
Madivala G Basavaraj ◽  
Dillip Kumar Satapathy

We report experimental studies on the self-assembly and degree of ordering of binary mixture of soft colloids in the monolayer deposits obtained by controlled evaporation. A sessile drop containing soft...


Soft Matter ◽  
2021 ◽  
Author(s):  
Michael Bley ◽  
Joachim Dzubiella ◽  
Arturo Moncho Jorda

We employ reactive dynamical density functional theory (R-DDFT) and reactive Brownian dynamics (R-BD) simulations to study the non-equilibrium structure and phase behavior of an active dispersion of soft Gaussian colloids...


ACS Nano ◽  
2020 ◽  
Vol 14 (11) ◽  
pp. 14861-14868
Author(s):  
Jasper N. Immink ◽  
Maxime J. Bergman ◽  
J. J. Erik Maris ◽  
Joakim Stenhammar ◽  
Peter Schurtenberger

2020 ◽  
Author(s):  
Chloé Seyrig ◽  
Patrick Le Griel ◽  
Nathan Cowieson ◽  
Javier PErez ◽  
Niki Baccile

Multilamellar wall vesicles (MLWV) are an interest class of polyelectrolyte-surfactant complexes (PESCs) for the wide applications ranging from house-care to biomedical products. If MLWV are generally obtained by a polyelectrolyte-driven vesicle agglutination under pseudoequilibrium conditions, the resulting phase is often a mixture of more than one structure. In this work, we show that MLWV can be massively and reproductively prepared from a recentlydeveloped method involving a pH-stimulated phase transition from a complex coacervate phase (Co). We employ a biobased pH-sensitive microbial glucolipid biosurfactant in the presence of a natural, or synthetic, polyamine (chitosan, poly-L-Lysine, polyethylene imine, polyallylamine). In situ small angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) show a systematic isostructural and isodimensional transition from the Co to the MLWV phase, while optical microscopy under polarized light experiments and cryo-TEM reveal a massive, virtually quantitative, presence of MLWV. Finally, the multilamellar wall structure is not perturbed by filtration and sonication, two typical methods employed to control size distribution in vesicles. In summary, this work highlights a new, robust, non-equilibrium phase-change method to develop biobased multilamellar wall vesicles, promising soft colloids with applications in the field of personal care, cosmetics and pharmaceutics among many others.


Sign in / Sign up

Export Citation Format

Share Document