Experimental and density functional theory investigation of 1-(4-Bromophenyl)-3-(4-ethoxyphenyl)-prop-2-en-1-one (EBC) single crystals for high second-order nonlinear optical applications

2021 ◽  
pp. 132243
Author(s):  
Rui Chen ◽  
Tianhua Wang ◽  
Kai Xu ◽  
Qibo Wang ◽  
Jinkang Ma ◽  
...  
2021 ◽  
Vol 9 (2) ◽  
pp. 49-54

A lot of molecules have been reported for certain applications. However, the need to continuously search for novel materials with more promise is very important because of the competitive technological innovations. One of the ways to achieve this is to use valid theoretical methods that can effectively and accurately predict the properties of existing molecular entities and using these methods to predict the properties of hypothetical molecules. The compound (4-methylphenyl) (4-methylpiperidin-1-yl) methanone (MPMPM) has been reported for its nonlinear optical potentials; however, investigating their reactivity indices would lead to the understanding of the mechanism behind their suitability as nonlinear optical devices. The molecular backbone of MPMPM was altered by introducing some substituents that could alter molecular properties. MPMPM and its derivatives were, therefore, optimized with density functional theory and the time-dependent density functional theory using pure and hybrid correlations and a polar basis set, 6-31G(d). The energy band gaps of the substituted derivatives were lower than that of MPMPM while the dipole moments and hyperpolarizabilities were higher, indicating that they could serve as better alternatives for nonlinear optical applications.


RSC Advances ◽  
2014 ◽  
Vol 4 (72) ◽  
pp. 38300-38309 ◽  
Author(s):  
Chun-Guang Liu ◽  
Ming-Li Gao ◽  
Zhi-Jian Wu

Redox-switchable second-order nonlinear optical (NLO) responses of a series of ferrocene-tetrathiafulvalene (Fc–TTF) hybrids have been studied based on density functional theory calculations.


Sign in / Sign up

Export Citation Format

Share Document