DNA repair in response to anthracycline–DNA adducts: A role for both homologous recombination and nucleotide excision repair

Author(s):  
Damian M.S. Spencer ◽  
Rebecca A. Bilardi ◽  
Tad H. Koch ◽  
Glen C. Post ◽  
Jordan W. Nafie ◽  
...  
Biochemistry ◽  
2010 ◽  
Vol 49 (6) ◽  
pp. 1053-1055 ◽  
Author(s):  
Pawel Jaruga ◽  
Yan Xiao ◽  
Vladimir Vartanian ◽  
R. Stephen Lloyd ◽  
Miral Dizdaroglu

1992 ◽  
Vol 12 (7) ◽  
pp. 3041-3049
Author(s):  
L Bardwell ◽  
A J Cooper ◽  
E C Friedberg

The RAD1 and RAD10 genes of Saccharomyces cerevisiae are two of at least seven genes which are known to be required for damage-specific recognition and/or damage-specific incision of DNA during nucleotide excision repair. RAD1 and RAD10 are also involved in a specialized mitotic recombination pathway. We have previously reported the purification of the RAD10 protein to homogeneity (L. Bardwell, H. Burtscher, W. A. Weiss, C. M. Nicolet, and E. C. Friedberg, Biochemistry 29:3119-3126, 1990). In the present studies we show that the RAD1 protein, produced by in vitro transcription and translation of the cloned gene, specifically coimmunoprecipitates with the RAD10 protein translated in vitro or purified from yeast. Conversely, in vitro-translated RAD10 protein specifically coimmunoprecipitates with the RAD1 protein. The sites of this stable and specific interaction have been mapped to the C-terminal regions of both polypeptides. This portion of RAD10 protein is evolutionarily conserved. These results are the first biochemical evidence of a specific association between any eukaryotic proteins genetically identified as belonging to a recombination or DNA repair pathway and suggest that the RAD1 and RAD10 proteins act at the same or consecutive biochemical steps in both nucleotide excision repair and mitotic recombination.


2019 ◽  
Author(s):  
Goran Kokic ◽  
Aleksandar Chernev ◽  
Dimitry Tegunov ◽  
Christian Dienemann ◽  
Henning Urlaub ◽  
...  

AbstractGenomes are constantly threatened by DNA damage, but cells can remove a large variety of DNA lesions by nucleotide excision repair (NER)1. Mutations in NER factors compromise cellular fitness and cause human diseases such as Xeroderma pigmentosum (XP), Cockayne syndrome and trichothiodystrophy2,3. The NER machinery is built around the multisubunit transcription factor IIH (TFIIH), which opens the DNA repair bubble, scans for the lesion, and coordinates excision of the damaged DNA single strand fragment1,4. TFIIH consists of a kinase module and a core module that contains the ATPases XPB and XPD5. Here we prepare recombinant human TFIIH and show that XPB and XPD are stimulated by the additional NER factors XPA and XPG, respectively. We then determine the cryo-electron microscopy structure of the human core TFIIH-XPA-DNA complex at 3.6 Å resolution. The structure represents the lesion-scanning intermediate on the NER pathway and rationalizes the distinct phenotypes of disease mutations. It reveals that XPB and XPD bind double- and single-stranded DNA, respectively, consistent with their translocase and helicase activities. XPA forms a bridge between XPB and XPD, and retains the DNA at the 5’-edge of the repair bubble. Biochemical data and comparisons with prior structures6,7 explain how XPA and XPG can switch TFIIH from a transcription factor to a DNA repair factor. During transcription, the kinase module inhibits the repair helicase XPD8. For DNA repair, XPA dramatically rearranges the core TFIIH structure, which reorients the ATPases, releases the kinase module and displaces a ‘plug’ element from the DNA-binding pore in XPD. This enables XPD to move by ~80 Å, engage with DNA, and scan for the lesion in a XPG-stimulated manner. Our results provide the basis for a detailed mechanistic analysis of the NER mechanism.


2020 ◽  
Vol 15 (12) ◽  
pp. 3844-3878
Author(s):  
Sona Vodenkova ◽  
Amaya Azqueta ◽  
Andrew Collins ◽  
Maria Dusinska ◽  
Isabel Gaivão ◽  
...  

2004 ◽  
Vol 24 (3) ◽  
pp. 1200-1205 ◽  
Author(s):  
Ming Tian ◽  
Reiko Shinkura ◽  
Nobuhiko Shinkura ◽  
Frederick W. Alt

ABSTRACT Xeroderma pigmentosum (XP) is a human genetic disease which is caused by defects in nucleotide excision repair. Since this repair pathway is responsible for removing UV irradiation-induced damage to DNA, XP patients are hypersensitive to sunlight and are prone to develop skin cancer. Based on the underlying genetic defect, the disease can be divided into the seven complementation groups XPA through XPG. XPF, in association with ERCC1, constitutes a structure-specific endonuclease that makes an incision 5′ to the photodamage. XPF-ERCC1 has also been implicated in both removal of interstrand DNA cross-links and homology-mediated recombination and in immunoglobulin class switch recombination (CSR). To study the function of XPF in vivo, we inactivated the XPF gene in mice. XPF-deficient mice showed a severe postnatal growth defect and died approximately 3 weeks after birth. Histological examination revealed that the liver of mutant animals contained abnormal cells with enlarged nuclei. Furthermore, embryonic fibroblasts defective in XPF are hypersensitive to UV irradiation and mitomycin C treatment. No defect in CSR was detected, suggesting that the nuclease is dispensable for this recombination process. These phenotypes are identical to those exhibited by the ERCC1-deficient mice, consistent with the functional association of the two proteins. The complex phenotype suggests that XPF-ERCC1 is involved in multiple DNA repair processes.


Sign in / Sign up

Export Citation Format

Share Document