mrna transcription
Recently Published Documents


TOTAL DOCUMENTS

366
(FIVE YEARS 69)

H-INDEX

47
(FIVE YEARS 6)

PPAR Research ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Minghui Tang ◽  
Jingyao Wang ◽  
Liangsheng Fan

Endometrial cancer is a common malignant tumor in gynecology, and the prognosis of advanced patients is dismal. Recently, many studies on the peroxisome proliferator-activated receptor pathway have elucidated its crucial involvement in endometrial cancer. Copy number variation (CNA) and nucleotide mutations often occur in tumor tissues, leading to abnormal protein expression and changes in protein structure. We analyzed the exon sequencing data of endometrial cancer patients in the TCGA database and found that somatic changes in PPAR pathway-related genes (PPAR-related-gene) often occur in UCEC patients. Patients with CNA or mutation changes in the exon region of the PPAR-related-gene usually have different prognostic outcomes. Furthermore, we found that the mRNA transcription and protein translation levels of PPAR-related-gene in UCEC are significantly different from that of adjacent tissues/normal uterus. The transcription level of some PPAR-related-gene (DBI, CPT1A, CYP27A1, and ME1) is significantly linked to the prognosis of UCEC patients. We further constructed a prognostic predicting tool called PPAR Risk score, a prognostic prediction tool that is a strong independent risk factor for the overall survival rate of UCEC patients. Comparing to the typical TNM classification system, this tool has higher prediction accuracy. We created a nomogram by combining PPAR Risk score with clinical characteristics of patients in order to increase prediction accuracy and promote clinical use. In summary, our study demonstrated that PPAR-related-gene in UCEC had significant alterations in CNA, nucleotide mutations, and mRNA transcription levels. These findings can provide a fresh perspective for postoperative survival prediction and individualized therapy of UCEC patients.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1393
Author(s):  
Rafael A. Casuso ◽  
Saad Al Fazazi ◽  
Julio Plaza-Díaz ◽  
Francisco J. Ruiz-Ojeda ◽  
Ascensión Rueda-Robles ◽  
...  

We tested whether physiological doses of hydroxytyrosol (HT) may alter the mRNA transcription of key metabolic genes in exercised skeletal muscle. Two groups of exercise-trained Wistar rats, HTlow and HTmid, were supplemented with 0.31 and 4.61 mg/kg/d of HT, respectively, for 10 weeks. Another two groups of rats were not supplemented with HT; one remained sedentary and the other one was exercised. After the experimental period, the soleus muscle was removed for qRT-PCR and western blot analysis. The consumption of 4.61 mg/kg/d of HT during exercise increased the mRNA expression of important metabolic proteins. Specifically, 4.61 mg/kg/d of HT may upregulate long-chain fatty acid oxidation, lactate, and glucose oxidation as well as mitochondrial Krebs cycle in trained skeletal muscle. However, a 4.61 mg/kg/d of HT may alter protein translation, as in spite of the increment showed by CD36 and GLUT4 at the mRNA level this was not translated to higher protein content.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260280
Author(s):  
Revathi Shanmugasundaram ◽  
Keila Acevedo ◽  
Mohamad Mortada ◽  
Gabriel Akerele ◽  
Todd J. Applegate ◽  
...  

Poultry infected with Salmonella mount an immune response initially, however the immune responses eventually disappear leading the bird to be a carrier of Salmonella. The hypothesis of this study is that Salmonella infection induces T regulatory cell numbers and cytokine production and suppress host T cells locally in the gut to escape the host immune responses. An experiment was conducted to comparatively analyze the effect of S. enterica ser. Enteritidis (S. Enteritidis) and S. enterica ser. Heidelberg (S. Heidelberg) infection on CD4+CD25+ T regulatory cell properties in chickens. A total of 144 broiler chicks were randomly distributed into three experimental groups of non-infected control, S. Enteritidis infected and S. Heidelberg infected groups. Chickens were orally inoculated with PBS (control) or 5x106 CFU/mL of either S. Enteritidis or S. Heidelberg at 3 d of age. Each group was replicated in six pens with eight chickens per pen. Chickens infected with S. Enteritidis had 6.2, 5.4, and 3.8 log10 CFU/g, and chickens infected with S. Heidelberg had 7.1, 4.8, and 4.1 log10 CFU/g Salmonella in the cecal contents at 4, 11, and 32 dpi, respectively. Both S. Enteritidis and S. Heidelberg were recovered from the liver and spleen 4 dpi. At 4, 11, and 32 dpi, chickens infected with S. Enteritidis and S. Heidelberg had increased CD4+CD25+ cell numbers as well as IL-10 mRNA transcription of CD4+CD25+ cells compared to that in the control group. CD4+CD25+ cells from S. Enteritidis- and S. Heidelberg-infected chickens and restimulated with 1 μg antigen in vitro, had higher (P < 0.05) IL-10 mRNA transcription than the CD4+CD25+ cells from the non-infected controls Though at 4dpi, chickens infected with S. Enteritidis and S. Heidelberg had a significant (P < 0.05) increase in CD4+CD25- IL-2, IL-1β, and IFNγ mRNA transcription, the CD4+CD25- IL-2, IL-1β, and IFNγ mRNA transcription, were comparable to that in the control group at 11 and 32dpi identifying that the host inflammatory response against Salmonella disappears at 11 dpi. It can be concluded that S. Enteritidis and S. Heidelberg infection at 3 d of age induces a persistent infection through inducing CD4+CD25+ cells and altering the IL-10 mRNA transcription of CD4+CD25+ cell numbers and cytokine production in chickens between 3 to 32 dpi allowing chickens to become asymptomatic carriers of Salmonella after 18 dpi.


Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1371
Author(s):  
Qi Gao ◽  
Yunlong Yang ◽  
Weipeng Quan ◽  
Jiachen Zheng ◽  
Yizhuo Luo ◽  
...  

African swine fever virus (ASFV) poses serious threats to the swine industry. The mortality rate of African swine fever (ASF) is 100%, and there is no effective vaccine currently available. Complex immune escape strategies of ASFV are crucial factors affecting immune prevention and vaccine development. CD2v and MGF360-505R genes have been implicated in the modulation of the immune response. The molecular mechanisms contributing to innate immunity are poorly understood. In this study, we discover the cytopathic effect and apoptosis of ΔCD2v/ΔMGF360-505R-ASFV after infection in porcine alveolar macrophages (PAMs) was significantly less than wild-type ASFV. We demonstrated that CD2v- and MGF360-505R-deficient ASFV decrease the level of apoptosis by inhibiting the NF-κB signaling pathway and IL-1β mRNA transcription. Compared with wild-type ASFV infection, the levels of phospho-NF-κB p65 and p-IκB protein decreased in CD2v- and MGF360-505R-deficient ASFV. Moreover, CD2v- and MGF360-505R-deficient ASFV induced less IL-1β production than wild-type ASFV and was attenuated in replication compared with wild-type ASFV. We further found that MGF360-12L, MGF360-13L, and MGF-505-2R suppress the promoter activity of NF-κB by reporter assays, and CD2v activates the NF-κB signaling pathway. These findings suggested that CD2v- and MGF360-505R-deficient ASFV could reduce the level of ASFV p30 and the apoptosis of PAMs by inhibiting the NF-κB signaling pathway and IL-1β mRNA transcription, which might reveal a novel strategy for ASFV to maintain the replication of the virus in the host.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2252
Author(s):  
Jennifer S. H. Im ◽  
Laura R. Newburn ◽  
Gregory Kent ◽  
K. Andrew White

Many positive-sense RNA viruses transcribe subgenomic (sg) mRNAs during infections that template the translation of a subset of viral proteins. Red clover necrotic mosaic virus (RCNMV) expresses its capsid protein through the transcription of a sg mRNA from RNA1 genome segment. This transcription event is activated by an RNA structure formed by base pairing between a trans-activator (TA) in RNA2 and a trans-activator binding site (TABS) in RNA1. In this study, the impact of the structural context of the TABS in RNA1 on the TA–TABS interaction and sg mRNA transcription was investigated using in vitro and in vivo approaches. The results (i) generated RNA secondary structure models for the TA and TABS, (ii) revealed that the TABS is partially base paired with proximal upstream sequences, which limits TA access, (iii) demonstrated that the aforementioned intra-RNA1 base pairing involving the TABS modulates the TA–TABS interaction in vitro and sg mRNA levels during infections, and (iv) revealed that the TABS in RNA1 can be modified to mediate sg mRNA transcription in a TA-independent manner. These findings advance our understanding of transcriptional regulation in RCNMV and provide novel insights into the origin of the TA–TABS interaction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xiaodan Zhong ◽  
Tao Wang ◽  
Yang Xie ◽  
Mengwen Wang ◽  
Wenjun Zhang ◽  
...  

Graphical AbstractIn mouse model of chronic diabetes mellitus, persistent hyperglycemia impaired thrombin-thrombomodulin-EPCR dependent PC activation. The reduced aPC-dependent cytoprotective signaling via PAR1/EPCR supressed OTUB1 expression resulting in augmented K48 ubiquitination and proteasomal degradation of the transcription factor YB-1. Within the nucleus, YB-1 binds to MEF2B promoter and restrains its transcription. Accordingly, ubiquitination and reduced protein levels of YB-1 compromised its inhibitory effect on MEF2B promoter and enhanced MEF2B mRNA transcription. Subsequently, elevated MEF2B expression disrupted the homeostasis of cardiomyocytes, rendering them susceptible to DCM. Exogenous administration of PC restores OTUB1/YB-1/MEF2B dependent cytoprotective responses and ameliorates development of DCM.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jieyan Luo ◽  
Qipeng Hu ◽  
Maling Gou ◽  
Xiaoke Liu ◽  
Yi Qin ◽  
...  

BackgroundMicrotubule-associated proteins (MAPs) have been considered to play significant roles in the tumor evolution of non-small cell lung cancer (NSCLC). Nevertheless, mRNA transcription levels and prognostic value of distinct MAPs in patients with NSCLC remain to be clarified.MethodsIn this study, the Oncomine database, Gene Expression Profiling Interactive Analysis (GEPIA) database, and Human Protein Atlas were utilized to analyze the relationship between mRNA/protein expression of different MAPs and clinical characteristics in NSCLC patients, including tumor type and pathological stage. The correlation between the transcription level of MAPs and overall survival (OS) of NSCLC patients was analyzed by Kaplan–Meier plotter. Besides, 50 frequently altered neighbor genes of the MAPs were screened out, and a network has been constructed via the cBioPortal and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) dataset. Meanwhile, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis on the expression data of MAPs and their 50 frequently altered neighbor genes in NSCLC tissues. Furthermore, The Cancer Immunome Atlas (TCIA) was utilized to analyze the relationship between MAP expression and the response to immunotherapy. Finally, we used reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to verify the expression of MAPs in 20 patients with NSCLC.ResultsThe present study discovered that the mRNA transcription levels of MAP7/7D2 were enriched in NSCLC tissues, while those of the MAP2/4/6/7D3 were lower in NSCLC specimens than those in control specimens. The mRNA transcription level of MAP6 was significantly associated with the advanced stage of NSCLC. Besides, survival analysis indicated that higher mRNA expressions of MAP2/4/6/7/7D3 were correlated considerably with favorable OS of NSCLC patients, whereas increased mRNA expression levels of MAP1A/1S were associated with poor OS. Moreover, the expression of MAP1A/1B/1S/4/6/7D1/7D3 was significantly correlated with immunophenoscore (IPS) in NSCLC patients.ConclusionsOur analysis indicated that MAP1A/1S could serve as potential personalized therapeutic targets for patients with NSCLC, and the enriched MAP2/4/6/7/7D3 expression could serve as a biomarker for favorable prognosis in NSCLC. Besides, the expression of MAP1A/1B/1S/4/6/7D1/7D3 was closely related to the response to immunotherapy. Taken together, MAP expression has potential application value in the clinical treatment and prognosis assessment of NSCLC patients, and further verifiable experiments can be conducted to verify our results.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Long Liu ◽  
Jingze Zhang ◽  
Mei Wu ◽  
Haiming Xu

Abstract Background To illustrate the mechanism of miRNA and mRNA in coronary artery diseasen (CAD), differentially expressed microRNAs (DEmiRNAs) and genes (DEGs) were analyzed. Methods The mRNA transcription profiles of GSE20680 (including 87 blood samples of CAD and 52 blood samples of control), GSE20681 (including 99 blood samples of CAD and 99 blood samples of control) and GSE12288 (including 110 blood samples of CAD and 112 blood samples of control) and the miRNA transcription profiles of GSE59421 (including 33 blood samples of CAD and 37 blood samples of control), GSE49823 (including 12 blood samples of CAD and 12 blood samples of control) and GSE28858 (including 13 blood samples of CAD and 13 blood samples of control) were downloaded from Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/). Then, the homogenous expressed mRNAs and miRNAs across the three mRNA transcription profiles and three miRNA transcription profiles were screened using the Fishers exact test in MetaDE. ES package. The weighted gene co-expression network analysis (WGCNA) was used to analyze gene modules. Additionally, the integrated miRNAs–targets regulatory network using the DEmiRNA and their targets was constructed using Cytoscape. Results A total of 1201 homogenously statistically significant DEGs were identified including 879 up-regulated and 322 down-regulated DEGs, while a total of 47 homogenously statistically significant DEmiRNAs including 37 up-regulated and 10 down-regulated DEmiRNAs in CAD compared with the controls across the three mRNA transcription profiles and the three miRNA transcription profiles. A total of 5067 genes were clustered into 9 modules in the training dataset, among which, 8 modules were validated. In the miRNAs-targets network, there existed 267 interaction relationships among 5 miRNAs (hsa-miR-361-5p, hsa-miR-139-5p, hsa-miR-146b-5p, hsa-miR-502-5p and hsa-miR-501-5p) and 213 targets. CAV1 could be the target of hsa-miR-361-5 while HSF2 was the target of both hsa-miR-361-5p and hsa-miR-146b-5p. CAV1 was significantly enriched in the GO term of regulation of cell proliferation. Conclusion hsa-miR-361-5p, has-miR-146b-5p, CAV1 and HSF2 could play an important role in CAD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takahito Ohira ◽  
Suguru Nakagawa ◽  
Jumpei Takeshita ◽  
Hiroyuki Aburatani ◽  
Hiroyuki Kugoh

AbstractMelanoma is one of the most aggressive types of cancer wherein resistance to treatment prevails. Therefore, it is important to discover novel molecular targets of melanoma progression as potential treatments. Here we show that paired-like homeodomain transcription factor 1 (PITX1) plays a crucial role in the inhibition of melanoma progression through regulation of SRY-box transcription factors (SOX) gene family mRNA transcription. Overexpression of PITX1 in melanoma cell lines resulted in a reduction in cell proliferation and an increase in apoptosis. Additionally, analysis of protein levels revealed an antagonistic cross-regulation between SOX9 and SOX10. Interestingly, PITX1 binds to the SOX9 promoter region as a positive regulatory transcription factor; PITX1 mRNA expression levels were positively correlated with SOX9 expression, and negatively correlated with SOX10 expression in melanoma tissues. Furthermore, transcription of the long noncoding RNA (lncRNA), survival-associated mitochondrial melanoma-specific oncogenic noncoding RNA (SAMMSON), was decreased in PITX1-overexpressing cells. Taken together, the findings in this study indicate that PITX1 may act as a negative regulatory factor in the development and progression of melanoma via direct targeting of the SOX signaling.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1736
Author(s):  
Andrea M. Spiri ◽  
Marilisa Novacco ◽  
Marina L. Meli ◽  
Martina Stirn ◽  
Barbara Riond ◽  
...  

Feline calicivirus (FCV) is a common cat virus associated with oral ulcerations and virulent-systemic disease. Efficacious FCV vaccines protect against severe disease but not against infection. The high genetic diversity of FCV poses a challenge in vaccine design. Protection against FCV has been related to humoral and cellular immunity; the latter has not been studied in detail. This study investigates the cellular and humoral immune response of specified pathogen-free (SPF) cats after modified-live FCV F9 vaccinations and two heterologous FCV challenges by the analysis of lymphocyte subsets, cytokine mRNA transcription levels, interferon (IFN)-γ release assays in peripheral blood mononuclear cells (PBMCs), anti-FCV antibodies, and neutralisation activity. Vaccinated cats developed a Th1 cytokine response after vaccination. Vaccination resulted in antibodies with neutralising activity against the vaccine but not the challenge viruses. Remarkably, IFN-γ-releasing PBMCs were detected in vaccinated cats upon stimulation with the vaccine strain and the first heterologous FCV challenge strain. After the first experimental infection, the mRNA transcription levels of perforin, granzyme B, INF-γ, and antiviral factor MX1 and the number of IFN-γ-releasing PBMCs when stimulated with the first challenge virus were higher in vaccinated cats compared to control cats. The first FCV challenge induced crossneutralising antibodies in all cats against the second challenge virus. Before the second challenge, vaccinated cats had a higher number of IFN-γ-releasing PBMCs when stimulated with the second challenge virus than control cats. After the second FCV challenge, there were less significant differences detected between the groups regarding lymphocyte subsets and cytokine mRNA transcription levels. In conclusion, modified-live FCV vaccination induced cellular but not humoral crossimmunity in SPF cats; innate immune mechanisms, secretory and membranolytic pathways, and IFN-γ-releasing PBMCs seem to be important in the host immune defence against FCV.


Sign in / Sign up

Export Citation Format

Share Document