cell free dna
Recently Published Documents


TOTAL DOCUMENTS

3574
(FIVE YEARS 1817)

H-INDEX

81
(FIVE YEARS 20)

2022 ◽  
Vol 26 ◽  
pp. 101351
Author(s):  
Wenbo Geng ◽  
Maowen Chen ◽  
Bailong Tao ◽  
Rong Wang ◽  
Dong Wang ◽  
...  

Author(s):  
M. Cisneros-Villanueva ◽  
L. Hidalgo-Pérez ◽  
M. Rios-Romero ◽  
A. Cedro-Tanda ◽  
C. A. Ruiz-Villavicencio ◽  
...  

AbstractCell-free DNA (cfDNA) analysis represents a promising method for the diagnosis, treatment selection and clinical follow-up of cancer patients. Although its general methodological feasibility and usefulness has been demonstrated, several issues related to standardisation and technical validation must be addressed for its routine clinical application in cancer. In this regard, most cfDNA clinical applications are still limited to clinical trials, proving its value in several settings. In this paper, we review the current clinical trials involving cfDNA/ctDNA analysis and highlight those where it has been useful for patient stratification, treatment follow-up or development of novel approaches for early diagnosis. Our query included clinical trials, including the terms ‘cfDNA’, ‘ctDNA’, ‘liquid biopsy’ AND ‘cancer OR neoplasm’ in the FDA and EMA public databases. We identified 1370 clinical trials (FDA = 1129, EMA = 241) involving liquid-biopsy analysis in cancer. These clinical trials show promising results for the early detection of cancer and confirm cfDNA as a tool for real-time monitoring of acquired therapy resistance, accurate disease-progression surveillance and improvement of treatment, situations that result in a better quality of life and extended overall survival for cancer patients.


Leukemia ◽  
2022 ◽  
Author(s):  
Johannes M. Waldschmidt ◽  
Andrew J. Yee ◽  
Tushara Vijaykumar ◽  
Ricardo A. Pinto ◽  
Julia Frede ◽  
...  

Author(s):  
Rahul Kumar ◽  
Vijay K. Sonkar ◽  
Jagadish Swamy ◽  
Azaj Ahmed ◽  
Anjali A. Sharathkumar ◽  
...  

Background Human aging is associated with increased risk of thrombosis, but the mechanisms are poorly defined. We hypothesized that aging induces peroxide‐dependent release of neutrophil extracellular traps that contribute to thrombin generation and thrombosis. Methods and Results We studied C57BL6J mice and littermates of glutathione peroxidase‐1 transgenic and wild‐type mice at young (4 month) and old (20 month) ages and a healthy cohort of young (18–39 years) or middle‐aged/older (50–72 years) humans. In plasma, we measured thrombin generation potential and components of neutrophil extracellular traps (cell‐free DNA and citrullinated histone). Aged wild‐type mice displayed a significant increase in thrombin generation that was decreased in aged glutathione peroxidase‐1 transgenic mice. Both aged wild‐type and aged glutathione peroxidase‐1 transgenic mice demonstrated similar elevation of plasma cell‐free DNA compared with young mice. In contrast, plasma levels of citrullinated histone were not altered with age or genotype. Release of neutrophil extracellular traps from neutrophils in vitro was also similar between young and aged wild‐type or glutathione peroxidase‐1 transgenic mice. Treatment of plasma or mice with DNase 1 decreased age‐associated increases in thrombin generation, and DNase 1 treatment blocked the development of experimental venous thrombi in aged C57BL6J mice. Similarly, thrombin generation potential and plasma cell‐free DNA, but not citrullinated histone, were higher in middle‐aged/older humans, and treatment of plasma with DNase 1 reversed the increase in thrombin generation. Conclusions We conclude that DNase 1 limits thrombin generation and protects from venous thrombosis during aging, likely by hydrolyzing cell‐free DNA.


2022 ◽  
Author(s):  
Jin-Lin Chu ◽  
Shu-Hong Bi ◽  
Yao He ◽  
Rui-Yao Ma ◽  
Xing-Yu Wan ◽  
...  

Abstract Background: Complications of diabetes mellitus (DM) are the leading cause of DM-related disability and mortality. Notably, diabetic kidney disease (DKD), one of the main complications of DM, has become a frequent cause of end-stage renal disease. A clinically convenient, non-invasive approach for monitoring the development of DKD would benefit the overall life quality of patients with DM and contribute to lower medical burdens through promoting preventive interventions.Methods: We utilized 5hmC-Seal to profile genome-wide 5-hydroxymethylcytosines in plasma cell-free DNA (cfDNA). Candidate genes were identified by intersecting the differentially modified 5hmC marker genes (DMGs) and differentially expressed genes (DEGs) from the GEO datasets GSE30528 and GSE30529. Cytoscape software was used to construct the protein-protein interaction (PPI) network and identify the hub genes.Results: The final gene panel of 9 hub genes, including (CTNNB1, PTEN, MYD88, ITGAM, CD28, ITGB2, VCAM1, CXCR4, CD44) were confirmed. Further analysis indicated that this 9-gene signature showed a good capacity to distinguish between DKD and DM. Conclusions: The 5hmC-Seal assay was successfully applied to the cfDNA samples from a cohort of DM patients with or without DKD. Altered 5hmC signatures in plasma cfDNA indicate that 5hmC-Seal has the potential to be a non-invasive epigenetic tool for monitoring the development of DKD and be a part of diabetic care.


2022 ◽  
Vol 20 (8) ◽  
pp. 3114
Author(s):  
V. A. Kondratskaya ◽  
M. S. Pokrovskaya ◽  
Yu. V. Doludin ◽  
A. L. Borisova ◽  
A. S. Limonova ◽  
...  

The search for early disease markers and the development of diagnostic systems has recently been expanding within genomics. Genomic deoxyribonucleic acid (DNA), cell-free DNA (cfDNA) and microbiome DNA obtained from different types of samples (tissues, blood and its derivatives, feces, etc.) are used as objects of genetic research. It has been shown that cfDNA that enters the bloodstream, in particular, as a result of apoptosis, necrosis, active tumor secretion and metastasis, is of great importance for studying molecular mechanisms of the pathological process and application in clinical practice. Circulating nucleic acid analysis can be used to monitor response to treatment, assess drug resistance, and quantify minimal residual disease. The review article reflects the following information about the biomaterial: source of cfDNA, methods of cfDNA isolation, storage and use for the diagnosis of certain diseases. Cell-free DNA can be present in biological fluids such as blood, urine, saliva, synovial and cerebrospinal fluid. In most cases, cfDNA is isolated from blood derivatives (serum and plasma), while it is most correct to use blood plasma for cfDNA isolation. Optimal and economically justifiable is the use of ethylenediaminetetra-acetic acid tubes for taking blood and obtaining plasma with subsequent cfDNA isolation. There is evidence that the optimal shelf life in an ethylenediaminetetra-acetic acid tube from the moment of blood sampling to subsequent isolation is a 2-hour interval. After centrifugation, cfDNA in plasma (or serum) can be stored for a long time at a temperature of -80O C. Storage at -20O C is undesirable, since DNA fragmentation increases.


Stroke ◽  
2022 ◽  
Author(s):  
Sarina R. Falcione ◽  
Glen C. Jickling

Sign in / Sign up

Export Citation Format

Share Document