The role of DNA polymerase ζ in translesion synthesis across bulky DNA adducts and cross-links in human cells

Author(s):  
Tetsuya Suzuki ◽  
Petr Grúz ◽  
Masamitsu Honma ◽  
Noritaka Adachi ◽  
Takehiko Nohmi
2016 ◽  
Vol 45 (3) ◽  
pp. 1270-1280 ◽  
Author(s):  
Leticia K. Lerner ◽  
Guilherme Francisco ◽  
Daniela T. Soltys ◽  
Clarissa R.R. Rocha ◽  
Annabel Quinet ◽  
...  

2015 ◽  
Vol 29 (24) ◽  
pp. 2588-2602 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Jeseong Park ◽  
Juan Conde ◽  
Maki Wakamiya ◽  
Louise Prakash ◽  
...  

Translesion synthesis (TLS) DNA polymerases (Pols) promote replication through DNA lesions; however, little is known about the protein factors that affect their function in human cells. In yeast, Rev1 plays a noncatalytic role as an indispensable component of Polζ, and Polζ together with Rev1 mediates a highly mutagenic mode of TLS. However, how Rev1 functions in TLS and mutagenesis in human cells has remained unclear. Here we determined the role of Rev1 in TLS opposite UV lesions in human and mouse fibroblasts and showed that Rev1 is indispensable for TLS mediated by Polη, Polι, and Polκ but is not required for TLS by Polζ. In contrast to its role in mutagenic TLS in yeast, Rev1 promotes predominantly error-free TLS opposite UV lesions in humans. The identification of Rev1 as an indispensable scaffolding component for Polη, Polι, and Polκ, which function in TLS in highly specialized ways opposite a diverse array of DNA lesions and act in a predominantly error-free manner, implicates a crucial role for Rev1 in the maintenance of genome stability in humans.


2021 ◽  
Vol 4 (4) ◽  
pp. e202000900
Author(s):  
Jung-Hoon Yoon ◽  
Debashree Basu ◽  
Karthi Sellamuthu ◽  
Robert E Johnson ◽  
Satya Prakash ◽  
...  

By extending synthesis opposite from a diverse array of DNA lesions, DNA polymerase (Pol) ζ performs a crucial role in translesion synthesis (TLS). In yeast and cancer cells, Rev1 functions as an indispensable scaffolding component of Polζ and it imposes highly error-prone TLS upon Polζ. However, for TLS that occurs during replication in normal human cells, Rev1 functions instead as a scaffolding component of Pols η, ι, and κ and Rev1-dependent TLS by these Pols operates in a predominantly error-free manner. The lack of Rev1 requirement for Polζ function in TLS in normal cells suggested that some other protein substitutes for this Rev1 role. Here, we identify a novel role of Polλ as an indispensable scaffolding component of Polζ. TLS studies opposite a number of DNA lesions support the conclusion that as an integral component, Polλ adapts Polζ-dependent TLS to operate in a predominantly error-free manner in human cells, essential for genome integrity and cellular homeostasis.


2004 ◽  
Vol 64 (18) ◽  
pp. 6469-6475 ◽  
Author(s):  
Ekaterina Bassett ◽  
Nicole M. King ◽  
Miriam F. Bryant ◽  
Suzanne Hector ◽  
Lakshmi Pendyala ◽  
...  

2018 ◽  
Vol 8 (2) ◽  
pp. 754-754
Author(s):  
Likui Zhang ◽  
Yanchao Huang ◽  
Xinyuan Zhu ◽  
Yuxiao Wang ◽  
Haoqiang Shi ◽  
...  

2017 ◽  
Vol 8 (2) ◽  
pp. 754-754
Author(s):  
Likui Zhang ◽  
Yanchao Huang ◽  
Xinyuan Zhu ◽  
Yuxiao Wang ◽  
Haoqiang Shi ◽  
...  

2003 ◽  
Vol 278 (21) ◽  
pp. 18767-18775 ◽  
Author(s):  
Anne Stary ◽  
Patricia Kannouche ◽  
Alan R. Lehmann ◽  
Alain Sarasin

Sign in / Sign up

Export Citation Format

Share Document