Hot deformation behavior and microstructure evolution of twin-roll-cast Mg–2.9Al–0.9Zn alloy: A study with processing map

2008 ◽  
Vol 494 (1-2) ◽  
pp. 173-178 ◽  
Author(s):  
W.P. Peng ◽  
P.J. Li ◽  
P. Zeng ◽  
L.P. Lei
Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1020 ◽  
Author(s):  
Kristina Kittner ◽  
Madlen Ullmann ◽  
Thorsten Henseler ◽  
Rudolf Kawalla ◽  
Ulrich Prahl

In the present work, the microstructure, texture, mechanical properties as well as hot deformation behavior of a Mg-2Zn-1Al-0.3Ca sheet manufactured by twin roll casting were investigated. The twin roll cast state reveals a dendritic microstructure with intermetallic compounds predominantly located in the interdendritic areas. The twin roll cast samples were annealed at 420 °C for 2 h followed by plane strain compression tests in order to study the hardening and softening behavior. Annealing treatment leads to the formation of a grain structure, consisting of equiaxed grains with an average diameter of approximately 19 µm. The twin roll cast state reveals a typical basal texture and the annealed state shows a weakened texture, by spreading basal poles along the transverse direction. The twin roll cast Mg-2Zn-1Al-0.3Ca alloy offers a good ultimate tensile strength of 240 MPa. The course of the flow curves indicate that dynamic recrystallization occurs during hot deformation. For the validity range from 250 °C to 450 °C as well as equivalent logarithmic strain rates from 0.01 s−1 to 10 s−1 calculated model coefficients are shown. The average activation energy for plastic flow of the twin roll cast and annealed Mg-2Zn-1Al-0.3Ca alloy amounts to 180.5 kJ/mol. The processing map reveals one domain with flow instability at temperatures above 370 °C and strain rates ranging from 3 s−1 to 10 s−1. Under these forming conditions, intergranular cracks arose and grew along the grain boundaries.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3628
Author(s):  
Kristina Kittner ◽  
Madlen Ullmann ◽  
Ulrich Prahl

The Mg-6.8Y-2.5Zn-0.4Zr (WZ73) alloy exhibits different microstructure characteristic after conventional casting compared to the twin-roll cast (TRC) state. Twin-roll casting results in a finer microstructure, where the LPSO phases are more finely distributed and less strongly connected. A transfer of the hot deformation behavior from the as-cast condition to the TRC condition is only possible to a limited extent due to the microstructural differences. Both states show differences in the recrystallization behavior during hot deformation. In the conventional cast state, dynamic recrystallization (DRX) is assumed to be delayed by the occurrence of coarse blocky LPSO phases. Main DRX mechanisms are continuous dynamic recrystallization (CDRX), particle stimulated nucleation (PSN) and twin induced dynamic recrystallization (TDRX). The deformed TRC sample showed pronounced DRX at almost all deformation conditions. Besides the TDRX and the PSN mechanism, kink induced dynamic recrystallization (KDRX) can be observed. Optimum deformation conditions for both states are temperatures from 500 °C to 520 °C, and strain rates ranging from 0.01 s−1 to 0.1 s−1 for the as-cast material as well as a strain rate of 1 s−1 for the TRC material.


2021 ◽  
Vol 31 (6) ◽  
pp. 1700-1716
Author(s):  
Yong MAO ◽  
Dan-li ZHU ◽  
Jun-jie HE ◽  
Chao DENG ◽  
Ying-jie SUN ◽  
...  

Author(s):  
Shi-ping Xi ◽  
Xin-liang Gao ◽  
Wei Liu ◽  
Yan-lu Lu ◽  
Gui-qin Fu ◽  
...  

2019 ◽  
Vol 35 (6) ◽  
pp. 1198-1209 ◽  
Author(s):  
Weili Cheng ◽  
Yang Bai ◽  
Shichao Ma ◽  
Lifei Wang ◽  
Hongxia Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document