fully lamellar
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 26)

H-INDEX

27
(FIVE YEARS 3)

Author(s):  
Yueling Guo ◽  
Lina Jia ◽  
Junyang He ◽  
Siyuan Zhang ◽  
Zhiming Li ◽  
...  

Abstract Rapid solidification techniques such as electron beam additive manufacturing are considered as promising pathways for manufacturing Nb-Si based alloys for ultra-high-temperature applications. Here we investigate the microstructure diversity of a series of Nb-Si-Ti alloys via electron beam surface melting (EBSM) to reveal their rapid solidification behaviors. Results show that the microstructural transition from coupled to divorced Nbss/Nb3Si eutectics can be triggered by increasing Si content. The formation of fully lamellar eutectics, evidenced by scanning transmission electron microscopy and atom probe tomography (APT), is achieved in the EBSM-processed Nb18Si20Ti alloy (at%), in contrast to the hypereutectic microstructures in arc-melted counterparts. The dendritic microstructures containing divorced eutectics are generated with a higher content of Si during rapid solidification. The transition from faceted to non-faceted growth of intermetallic Nb3Si occurs with the formation of primary Nb3Si dendrites. The interplay between eutectic and dendritic growths of silicides is discussed to provide insights for future alloy design and manufacture.


Author(s):  
R.G. Pettit ◽  
P.A. Wawrzynek ◽  
B.J. Carter ◽  
R. Singh ◽  
A.L. Pilchak ◽  
...  

2021 ◽  
Vol 7 ◽  
Author(s):  
Jan E. Schnabel ◽  
Ingo Scheider

A crystal plasticity model of the creep behavior of alloys with lamellar microstructures is presented. The model is based on the additive decomposition of the plastic strain into a part that describes the instantaneous (i.e., high strain rate) plastic response due to loading above the yield point, and a part that captures the viscoplastic deformation at elevated temperatures. In order to reproduce the transition from the primary to the secondary creep stage in a physically meaningful way, the competition between work hardening and recovery is modeled in terms of the evolving dislocation density. The evolution model for the dislocation density is designed to account for the significantly different free path lengths of slip systems in lamellar microstructures depending on their orientation with respect to the lamella interface. The established model is applied to reproduce and critically discuss experimental findings on the creep behavior of polysynthetically twinned TiAl crystals. Although the presented crystal plasticity model is designed with the creep behavior of fully lamellar TiAl in mind, it is by no means limited to these specific alloys. The constitutive model and many of the discussed assumptions also apply to the creep behavior of other crystalline materials with lamellar microstructures.


Author(s):  
Michael Burtscher ◽  
Markus Alfreider ◽  
Klemens Schmuck ◽  
Helmut Clemens ◽  
Svea Mayer ◽  
...  
Keyword(s):  

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 160
Author(s):  
Dongdong Zhu ◽  
Duo Dong ◽  
Li Liu ◽  
Xiaohong Wang ◽  
Jiqiu Qi

In the present paper, new heat treatment was performed on 10 vol.% TiC/Ti-6Al-3Sn-9Zr-1.5Mo composite fabricated by an in situ casting technique. The aim is to obtain fully lamellar structure in matrix, control the lamellar structure quantitatively and understand the variation of the tensile properties of as-cast and heat-treated composites. For as-cast composite, matrix exhibited fully lamellar structure with some extent of basket-weave characteristics, and reinforcement was mainly in fine rod and strip shape. After β heat treatment, matrix microstructure was refined visibly. As the new cooling method was employed, wider α lath in matrix was obtained. The composite with very fine lamellar structure showed better yield strength (YS) in comparison with that with coarse lamellar microstructure below 650 °C. At 700 °C, fine grain strengthening cannot exert effective influence on tensile strength. It is proved that the enhanced YS is mainly ascribed to the refinement of α lath at ambient temperature. The heat-treated composites with wider α lath displayed excellent ductility at ambient temperature. Above 600 °C, the effect of α phase size on tensile elongation was negligible in the heat-treated composites, since matrix was softened.


2021 ◽  
Vol 7 ◽  
Author(s):  
Hariprasath Ganesan ◽  
Ingo Scheider ◽  
Christian J. Cyron

γ-titanium aluminide (TiAl) alloys with fully lamellar microstructure possess excellent properties for high-temperature applications. Such fully lamellar microstructure has interfaces at different length scales. The separation behavior of the lamellae at these interfaces is crucial for the mechanical properties of the whole material. Unfortunately, quantifying it by experiments is difficult. Therefore, we use molecular dynamics (MD) simulations to this end. Specifically, we study the high-temperature separation behavior under tensile loading of the four different kinds of lamellar interfaces appearing in TiAl, namely, the γ/α2, γ/γPT, γ/γTT, and γ/γRB interfaces. In our simulations, we use two different atomistic interface models, a defect-free (Type-1) model and a model with preexisting voids (Type-2). Clearly, the latter is more physical but studying the former also helps to understand the role of defects. Our simulation results show that among the four interfaces studied, the γ/α2 interface possesses the highest yield strength, followed by the γ/γPT, γ/γTT, and γ/γRB interfaces. For Type-1 models, our simulations reveal failure at the interface for all γ/γ interfaces but not for the γ/α2 interface. By contrast, for Type-2 models, we observe for all the four interfaces failure at the interface. Our atomistic simulations provide important data to define the parameters of traction–separation laws and cohesive zone models, which can be used in the framework of continuum mechanical modeling of TiAl. Temperature-dependent model parameters were identified, and the complete traction–separation behavior was established, in which interface elasticity, interface plasticity, and interface damage could be distinguished. By carefully eliminating the contribution of bulk deformation from the interface behavior, we were able to quantify the contribution of interface plasticity and interface damage, which can also be related to the dislocation evolution and void nucleation in the atomistic simulations.


2021 ◽  
Vol 1016 ◽  
pp. 792-797
Author(s):  
Juraj Lapin ◽  
Kateryna Kamyshnykova

Samples of TiAl-based matrix in-situ composite with the chemical composition Ti-46.4Al-5.1Nb-1C-0.2B (at.%) reinforced with a low volume fraction of primary Ti2AlC particles were prepared by vacuum induction melting in graphite crucibles and centrifugal casting into graphite moulds. The hot isostatic pressing (HIP) of the as-cast samples and subsequent heat treatments leads to the formation of equiaxed grains with fully lamellar α2(Ti3Al) + γ (TiAl) microstructure and uniformly distributed Ti2AlC and TiB particles. The minimum creep rates of the in-situ composite are significantly lower compared to those measured for the counterpart low carbon benchmark alloy with the chemical composition Ti-47Al-5.2Nb-0.2C-0.2B (at.%) at temperatures ranging from 800 to 900 °C and applied stress of 200 MPa. The studied in-situ composite shows also significantly improved creep resistance compared to that of some TiAl-based alloys with fully lamellar, convoluted and pseudo-duplex microstructures at a temperature of 800 °C and applied stress of 200 MPa.


Sign in / Sign up

Export Citation Format

Share Document