scholarly journals Effect of friction stir welding parameters on microstructure and mechanical properties of DSS–Cu joints

2017 ◽  
Vol 693 ◽  
pp. 111-120 ◽  
Author(s):  
V. Shokri ◽  
A. Sadeghi ◽  
M.H. Sadeghi
2019 ◽  
Vol 969 ◽  
pp. 720-726
Author(s):  
Ajay Kumar Revelly ◽  
B. Rajkumar ◽  
V. Swapna

The main aim of the present topic is friction stir welding (FSW) of Aluminium HE-30, which shows that improved microstructures, strong weld and with less of defects. In the other hand, an attempt was made to correlate the welding parameters and mechanical properties. In the present investigation four rotational speeds of 1000 rpm, 1200 rpm, 1400 rpm and 1600 rpm with travelling speed of 30 mm/min. and tool geometry (straight cylindrical) was chosen. It was observed that the tool rotational speed is a sensitive parameter to decide the ultimate tensile strength and yield strength of the present material. Similarly, the hardness of Al plates is improved at the weld zone. Hence, it is suggested that to consider a parameter such as welding tool rotational speed, travelling speed and materials in selecting the welding methods of sound joints, because it influences the microstructure and mechanical properties in various applications. In the present study, non-destructive tests are also confirmed the defective nature of the weld zone of Al plates.


2021 ◽  
Author(s):  
Srinivasa Bhukya ◽  
Zhenhua Wu ◽  
Joseph Maniscalco ◽  
Abdelmageed Elmustafa

Abstract In this research, Copper (Cu) donor material assisted friction stir welding (FSW) of AA6061-T6 alloy was studied. Cu assisted FSW joints of AA6061-T6 alloy were prepared at a constant tool rotational rate of 1400 rpm and various welding speeds at 1 mm/s and 3 mm/s. The Cu donor material of different thickness (i.e., 20%, 40%, and 60%) with respect to the workpiece thickness was selected to assist the FSW joining at the plunge stage. It is observed that the downward force generated in the FSW process was gradually decreased after introducing Cu donor material with incremental thicknesses with respect to workpiece at the plunge stage. Post-weld analysis was characterized in terms of microstructure, and mechanical properties. The results of microstructure analysis at the stir zone (SZ) show the formation of finer grains due to dynamic recrystallization and plastic deformation. Micro-hardness tests reveal that the hardness decreased from the base metal (BM) to the SZ across the heat affected zone (HAZ) and thermo-mechanically affected zone (TMAZ). The lowest value of hardness appeared in the TMAZ and HAZ where tensile failure occurs. With increasing welding speed, the average hardness in the SZ decreased due to lower heat input and faster cooling rate. Tensile test plots show no significant change in ultimate tensile strength with or without Cu donor material. Fractography of tensile tested samples shows both ductile and brittle like structure for given welding parameters. This proposed work of FSW with Cu donor material is promising to increase tool life due to the decrement of the downforce during plunge and throughout the welding stage. Meanwhile, the inclusion of donor material did not compromise the weld quality in terms of the mechanical properties and micro-hardness.


Author(s):  
Behrouz Bagheri ◽  
Farzaneh Sharifi ◽  
Mahmoud Abbasi ◽  
Amin Abdollahzadeh

The Taguchi method was employed to find the optimum values of friction stir welding parameters including welding speed, rotating speed, and tilt angle for joining AA6061-T6 aluminum alloys. The combined influences of these parameters were entirely analyzed. Statistical outcomes were investigated by the study of variances and signal-to-noise ratios. A Coupled Eulerian and Lagrangian technique is implemented to simulate and verify the optimal parameters during the friction stir welding. To verify results, a comparison between the welding process under optimized parameters with experimental and non-optimized parameters was simulated for the friction stir welding process. The material flow, strain rate, thermal behaviors, and mechanical properties of samples fabricated with optimal welding parameters are higher than those produced from the non-optimal parameters. It was also concluded that the grain size of the stir zone under optimal welding parameters (6–8 µm) is finer than that of non-optimal welding parameters (11–13 µm). Low uniform distribution of material element and coarse microstructure were some of the results of welding with non-optimized parameters. Based on residual stress analysis, the application of optimal joining conditions can decrease the peak tensile residual stress by about 38.3%. The much desirable results obtained in terms of microstructure and mechanical properties could be of great significance to the welding industry.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1938
Author(s):  
Haifeng Yang ◽  
Hongyun Zhao ◽  
Xinxin Xu ◽  
Li Zhou ◽  
Huihui Zhao ◽  
...  

In this study, 2A14-T4 Al-alloy T-joints were prepared via stationary shoulder friction stir welding (SSFSW) technology where the stirring pin’s rotation speed was set as different values. In combination with the numerical simulation results, the macro-forming, microstructure, and mechanical properties of the joints under different welding conditions were analyzed. The results show that the thermal cycle curves in the SSFSW process are featured by a steep climb and slow decreasing variation trends. As the stirring pin’s rotation speed increased, the grooves on the weld surface became more obvious. The base and rib plates exhibit W- or N-shaped hardness distribution patterns. The hardness of the weld nugget zone (WNZ) was high but was lower than that of the base material. The second weld’s annealing effect contributed to the precipitation and coarsening of the precipitated phase in the first weld nugget zone (WNZ1). The hardness of the heat affect zone (HAZ) in the vicinity of the thermo-mechanically affected zone (TMAZ) dropped to the minimum. As the stirring pin's rotation speed increased, the tensile strengths of the base and rib plates first increased and then dropped. The base and rib plates exhibited ductile and brittle/ductile fracture patterns, respectively.


Sign in / Sign up

Export Citation Format

Share Document